There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {x}^{100} - 5{x}^{99} + {x}^{98}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{100} - 5x^{99} + x^{98}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{100} - 5x^{99} + x^{98}\right)}{dx}\\=&100x^{99} - 5*99x^{98} + 98x^{97}\\=&100x^{99} - 495x^{98} + 98x^{97}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 100x^{99} - 495x^{98} + 98x^{97}\right)}{dx}\\=&100*99x^{98} - 495*98x^{97} + 98*97x^{96}\\=&9900x^{98} - 48510x^{97} + 9506x^{96}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 9900x^{98} - 48510x^{97} + 9506x^{96}\right)}{dx}\\=&9900*98x^{97} - 48510*97x^{96} + 9506*96x^{95}\\=&970200x^{97} - 4705470x^{96} + 912576x^{95}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 970200x^{97} - 4705470x^{96} + 912576x^{95}\right)}{dx}\\=&970200*97x^{96} - 4705470*96x^{95} + 912576*95x^{94}\\=&94109400x^{96} - 451725120x^{95} + 86694720x^{94}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !