Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{M}{(xlog_{x}^{M})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{M}{xlog(x, M)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{M}{xlog(x, M)}\right)}{dx}\\=&\frac{M*-1}{x^{2}log(x, M)} + \frac{M(\frac{-(\frac{(0)}{(M)} - \frac{(1)log_{x}^{M}}{(x)})}{{\left(log(x, M)^{2}(ln(x))})}{x}\\=&\frac{M}{x^{2}log(x, M)ln(x)} - \frac{M}{x^{2}log(x, M)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return