There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{M}{(xlog_{3}^{27})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{M}{xlog(3, 27)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{M}{xlog(3, 27)}\right)}{dx}\\=&\frac{M*-1}{x^{2}log(3, 27)} + \frac{M(\frac{-(\frac{(0)}{(27)} - \frac{(0)log_{3}^{27}}{(3)})}{{\left(log(3, 27)^{2}(ln(3))})}{x}\\=&\frac{-M}{x^{2}log(3, 27)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !