There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(4 - sqrt(-4{x}^{2} - 8x))}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{1}{2}sqrt(-4x^{2} - 8x) + 2\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{1}{2}sqrt(-4x^{2} - 8x) + 2\right)}{dx}\\=& - \frac{\frac{1}{2}(-4*2x - 8)*\frac{1}{2}}{(-4x^{2} - 8x)^{\frac{1}{2}}} + 0\\=&\frac{2x}{(-4x^{2} - 8x)^{\frac{1}{2}}} + \frac{2}{(-4x^{2} - 8x)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !