Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{4}{\frac{1}{({k}^{2}({x}^{4} - 1) + 1)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{4}}{(k^{2}x^{4} - k^{2} + 1)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{4}}{(k^{2}x^{4} - k^{2} + 1)^{2}}\right)}{dx}\\=&(\frac{-2(k^{2}*4x^{3} + 0 + 0)}{(k^{2}x^{4} - k^{2} + 1)^{3}})x^{4} + \frac{4x^{3}}{(k^{2}x^{4} - k^{2} + 1)^{2}}\\=&\frac{-8k^{2}x^{7}}{(k^{2}x^{4} - k^{2} + 1)^{3}} + \frac{4x^{3}}{(k^{2}x^{4} - k^{2} + 1)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return