There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(\frac{1}{(cos(x)(sin(x) - ccos(x)))})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(\frac{1}{(sin(x)cos(x) - ccos^{2}(x))})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(\frac{1}{(sin(x)cos(x) - ccos^{2}(x))})\right)}{dx}\\=&\frac{(\frac{-(cos(x)cos(x) + sin(x)*-sin(x) - c*-2cos(x)sin(x))}{(sin(x)cos(x) - ccos^{2}(x))^{2}})*\frac{1}{2}}{(\frac{1}{(sin(x)cos(x) - ccos^{2}(x))})^{\frac{1}{2}}}\\=&\frac{-cos^{2}(x)}{2(sin(x)cos(x) - ccos^{2}(x))^{\frac{3}{2}}} + \frac{sin^{2}(x)}{2(sin(x)cos(x) - ccos^{2}(x))^{\frac{3}{2}}} - \frac{csin(x)cos(x)}{(sin(x)cos(x) - ccos^{2}(x))^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !