There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arcsin(2)x + arccos(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xarcsin(2) + arccos(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xarcsin(2) + arccos(x)\right)}{dx}\\=&arcsin(2) + x(\frac{(0)}{((1 - (2)^{2})^{\frac{1}{2}})}) + (\frac{-(1)}{((1 - (x)^{2})^{\frac{1}{2}})})\\=&arcsin(2) - \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !