There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{x}{2} + 1 - sqrt(2x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}x - sqrt(2x) + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}x - sqrt(2x) + 1\right)}{dx}\\=&\frac{1}{2} - \frac{2*\frac{1}{2}}{(2x)^{\frac{1}{2}}} + 0\\=& - \frac{1}{2^{\frac{1}{2}}x^{\frac{1}{2}}} + \frac{1}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !