Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 15 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 15th\ derivative\ of\ function\ {e}^{c}ox + {e}^{sin(x)} + ln(sh(\frac{1}{2}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ox{e}^{c} + {e}^{sin(x)} + ln(sh(\frac{1}{2}))\\\\ &\color{blue}{The\ 15th\ derivative\ of\ function:} \\=&{e}^{sin(x)}cos^{15}(x) + 21770385{e}^{sin(x)}sin(x)cos^{3}(x) + 597871{e}^{sin(x)}cos^{3}(x) - 1777230{e}^{sin(x)}sin^{2}(x)cos(x) - 105468363{e}^{sin(x)}sin(x)cos^{5}(x) - 15857205{e}^{sin(x)}cos^{5}(x) + 136801665{e}^{sin(x)}sin^{2}(x)cos^{3}(x) - 20585565{e}^{sin(x)}sin^{3}(x)cos(x) - 189729540{e}^{sin(x)}sin^{2}(x)cos^{5}(x) + 260360100{e}^{sin(x)}sin^{3}(x)cos^{3}(x) + 36132525{e}^{sin(x)}sin(x)cos^{7}(x) + 14057043{e}^{sin(x)}cos^{7}(x) - 58108050{e}^{sin(x)}sin^{4}(x)cos(x) - 126441315{e}^{sin(x)}sin^{3}(x)cos^{5}(x) + 186035850{e}^{sin(x)}sin^{4}(x)cos^{3}(x) - 54864810{e}^{sin(x)}sin^{5}(x)cos(x) + 27522495{e}^{sin(x)}sin^{2}(x)cos^{7}(x) - 33108075{e}^{sin(x)}sin^{4}(x)cos^{5}(x) + 52026975{e}^{sin(x)}sin^{5}(x)cos^{3}(x) - 2167165{e}^{sin(x)}sin(x)cos^{9}(x) - 1768195{e}^{sin(x)}cos^{9}(x) - 18918900{e}^{sin(x)}sin^{6}(x)cos(x) + 7657650{e}^{sin(x)}sin^{3}(x)cos^{7}(x) - 2837835{e}^{sin(x)}sin^{5}(x)cos^{5}(x) + 31395{e}^{sin(x)}sin(x)cos^{11}(x) + 4729725{e}^{sin(x)}sin^{6}(x)cos^{3}(x) - 750750{e}^{sin(x)}sin^{2}(x)cos^{9}(x) - 2027025{e}^{sin(x)}sin^{7}(x)cos(x) + 675675{e}^{sin(x)}sin^{4}(x)cos^{7}(x) - 105{e}^{sin(x)}sin(x)cos^{13}(x) + 53053{e}^{sin(x)}cos^{11}(x) + 4095{e}^{sin(x)}sin^{2}(x)cos^{11}(x) - 75075{e}^{sin(x)}sin^{3}(x)cos^{9}(x) - 455{e}^{sin(x)}cos^{13}(x) - 16383{e}^{sin(x)}sin(x)cos(x) - {e}^{sin(x)}cos(x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return