There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x - 2x(1 + \frac{2}{({(1 - {x}^{2})}^{\frac{1}{2}})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{4x}{(-x^{2} + 1)^{\frac{1}{2}}} - x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{4x}{(-x^{2} + 1)^{\frac{1}{2}}} - x\right)}{dx}\\=& - 4(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})x - \frac{4}{(-x^{2} + 1)^{\frac{1}{2}}} - 1\\=& - \frac{4x^{2}}{(-x^{2} + 1)^{\frac{3}{2}}} - \frac{4}{(-x^{2} + 1)^{\frac{1}{2}}} - 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !