Mathematics
语言:中文
Language:English

current location:Mathematical operation > History of Inequality Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 inequalities

[ 1/1Inequality]
    Assignment:Find the solution set of inequality 10 >0.5*x*(e^(-0.1*ln(1.5*(1-e^(-0.1*x))/0.1/(1-e^(-1.5*x))))/(1-e^(-0.1*x))) >3 .
    Question type: Inequality
    Solution:
    The inequality can be reduced to 2 inequalities:
        10 >0.5 * x * ( e ^ ( -0.1 * ln ( 1.5 * ( 1 - e ^ ( -0.1 * x ) ) / 0.1 / ( 1 - e ^ ( -1.5 * x ) ) ) ) / ( 1 - e ^ ( -0.1 * x ) ) )         (1)
        0.5 * x * ( e ^ ( -0.1 * ln ( 1.5 * ( 1 - e ^ ( -0.1 * x ) ) / 0.1 / ( 1 - e ^ ( -1.5 * x ) ) ) ) / ( 1 - e ^ ( -0.1 * x ) ) ) >3         (2)
        From the definition field of divisor
         1 - e ^ ( -1.5 * x ) ≠ 0        (3 )
        From the definition field of ln
         1.5 * ( 1 - e ^ ( -0.1 * x ) ) / 0.1 / ( 1 - e ^ ( -1.5 * x ) ) > 0        (4 )
        From the definition field of divisor
         1 - e ^ ( -0.1 * x ) ≠ 0        (5 )

    From inequality(1):
         -10.781561 < x < 23.476931
    From inequality(2):
         x > -473.188475
    From inequality(3):
         x < 0 或  x > 0
    From inequality(4):
        x ∈ Φ (Φ is empty)that is, the inequality will never be estatlished within the real number range!
    From inequality(5):
         x < 0 或  x > 0

    From inequalities (1) and (2)
         -10.781561 < x < 23.476931     (6)
    From inequalities (3) and (6)
         -10.781561 < x < 0 或  0 < x < 23.476931     (7)
    From inequalities (4) and (7)
        x ∈ Φ (Φ is empty)that is, the inequality will never be estatlished within the real number range!    (8)
    From inequalities (5) and (8)
        x ∈ Φ (Φ is empty)that is, the inequality will never be estatlished within the real number range!    (9)

    The final solution set is :

        x ∈ Φ (Φ is empty)that is, the inequality will never be estatlished within the real number range!




Your problem has not been solved here? Please take a look at the  hot problems !


Return