Mathematics
语言:中文
Language:English

current location:Mathematical operation > History of Inequality Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 inequalities

[ 1/1Inequality]
    Assignment:Find the solution set of inequality n+2 <= 242/(3n+3) <= n+4 .
    Question type: Inequality
    Solution:
    The inequality can be reduced to 2 inequalities:
         n + 2 <= 242 / ( 3 * n + 3 )         (1)
         242 / ( 3 * n + 3 ) <= n + 4         (2)
        From the definition field of divisor
         3 * x + 3 ≠ 0        (3 )

    From inequality(1):
         n ≤ -10.495369 或  -1 ≤ n ≤ 7.495369
    From inequality(2):
         -11.605859 ≤ n ≤ -1 或  n ≥ 6.605859
    From inequality(3):
         n < -1 或  n > -1

    From inequalities (1) and (2)
         -11.605859 ≤ n ≤ -10.495369 或  6.605859 ≤ n ≤ 7.495369    (4)
    From inequalities (3) and (4)
         -11.605859 ≤ n ≤ -10.495369 或  6.605859 ≤ n ≤ 7.495369    (5)

    The final solution set is :

         -11.605859 ≤ n ≤ -10.495369 或  6.605859 ≤ n ≤ 7.495369




Your problem has not been solved here? Please take a look at the  hot problems !


Return