Mathematics
语言:中文
Language:English

current location:Mathematical operation > History of Inequality Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 inequalities

[ 1/1Inequality]
    Assignment:Find the solution set of inequality -2000+500/(1+i)+700/(1+i)^2+2000/(1+i)^3 >-10000+8000/(1+i)+2500/(1+i)^2+2000/(1+i)^3 .
    Question type: Inequality
    Solution:
    The inequality can be reduced to 1 inequality:
        -2000 + 500 / ( 1 + i ) + 700 / ( 1 + i ) ^ 2 + 2000 / ( 1 + i ) ^ 3 > -10000 + 8000 / ( 1 + i ) + 2500 / ( 1 + i ) ^ 2 + 2000 / ( 1 + i ) ^ 3         (1)
        From the definition field of divisor
         1 + x ≠ 0        (2 )
        From the definition field of divisor
         1 + x ≠ 0        (3 )
        From the definition field of divisor
         1 + x ≠ 0        (4 )
        From the definition field of divisor
         1 + x ≠ 0        (5 )
        From the definition field of divisor
         1 + x ≠ 0        (6 )
        From the definition field of divisor
         1 + x ≠ 0        (7 )

    From inequality(1):
         i < -1.198128 或  i > 0.135628
    From inequality(2):
         i < -1 或  i > -1
    From inequality(3):
         i < -1 或  i > -1
    From inequality(4):
         i < -1 或  i > -1
    From inequality(5):
         i < -1 或  i > -1
    From inequality(6):
         i < -1 或  i > -1
    From inequality(7):
         i < -1 或  i > -1

    From inequalities (1) and (2)
         i < -1.198128 或  i > 0.135628    (8)
    From inequalities (3) and (8)
         i < -1.198128 或  i > 0.135628    (9)
    From inequalities (4) and (9)
         i < -1.198128 或  i > 0.135628    (10)
    From inequalities (5) and (10)
         i < -1.198128 或  i > 0.135628    (11)
    From inequalities (6) and (11)
         i < -1.198128 或  i > 0.135628    (12)
    From inequalities (7) and (12)
         i < -1.198128 或  i > 0.135628    (13)

    The final solution set is :

         i < -1.198128 或  i > 0.135628




Your problem has not been solved here? Please take a look at the  hot problems !


Return