Mathematics
语言:中文
Language:English

current location:Mathematical operation > History of Inequality Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 inequalities

[ 1/1Inequality]
    Assignment:Find the solution set of inequality 0.5 <= (3a^2+2a+sqrt(9a^4+6a^3+7a^2+4a+1)+1)/(3a^2) <= 2 .
    Question type: Inequality
    Solution:
    The inequality can be reduced to 2 inequalities:
        0.5 <= ( 3 * a ^ 2 + 2 * a + sqrt ( 9 * a ^ 4 + 6 * a ^ 3 + 7 * a ^ 2 + 4 * a + 1 ) + 1 ) / ( 3 * a ^ 2 )         (1)
         ( 3 * a ^ 2 + 2 * a + sqrt ( 9 * a ^ 4 + 6 * a ^ 3 + 7 * a ^ 2 + 4 * a + 1 ) + 1 ) / ( 3 * a ^ 2 ) <= 2         (2)
        From the definition field of √
         9 * x ^ 4 + 6 * x ^ 3 + 7 * x ^ 2 + 4 * x + 1 ≥ 0        (3 )
        From the definition field of divisor
         3 * x ^ 2 ≠ 0        (4 )

    From inequality(1):
         a ∈ R (R is all real numbers),that is, in the real number range, the inequality is always established!
    From inequality(2):
         a ≤ -1/2
    From inequality(3):
         a ∈ R (R is all real numbers),that is, in the real number range, the inequality is always established!
    From inequality(4):
         a < 0 或  a > 0

    From inequalities (1) and (2)
         a ≤ -1/2    (5)
    From inequalities (3) and (5)
         a ≤ -1/2    (6)
    From inequalities (4) and (6)
         a ≤ -1/2    (7)

    The final solution set is :

         a ≤ -1/2




Your problem has not been solved here? Please take a look at the  hot problems !


Return