current location:Mathematical operation >
History of Inequality Computation > Answer
Overview: 1 questions will be solved this time.Among them
☆1 inequalities
[ 1/1Inequality]
Assignment:Find the solution set of inequality 0 <25tanx-(4.9*25)/(16*cosx^2) <3.44 .
Question type: Inequality
Solution:
The inequality can be reduced to 2 inequalities:
0 <25 * tan x - ( 4.9 * 25 ) / ( 16 * cos x ^ 2 ) (1)
25 * tan x - ( 4.9 * 25 ) / ( 16 * cos x ^ 2 ) <3.44 (2)
From the definition field of divisor
16 * cos x ^ 2 ≠ 0 (3 )
From inequality(1):
x < -8.183591 或 -5.953576 < x < -5.041999 或 -2.811983 < x < -1.900406 或 0.32961 < x < 1.241187 或 3.471202 < x < 4.382779 或 x > 6.612795
From inequality(2):
-8.204455 < x < -5.79597 或 -5.062862 < x < -2.654378 或 -1.92127 < x < 0.487215 或 1.220323 < x < 3.628807 或 4.361915 < x < 6.7704
From inequality(3):
x < -3926991/500000 或 -3926991/500000 < x < -4712389/1000000 或 -4712389/1000000 < x < -1570797/1000000 或 -1570797/1000000 < x < 1570797/1000000 或 1570797/1000000 < x < 4712389/1000000 或 4712389/1000000 < x < 3926991/500000 或 x > 3926991/500000
From inequalities (1) and (2)
-8.204455 < x < -8.183591 或 -5.953576 < x < -5.79597 或 -5.062862 < x < -5.041999 或 -2.811983 < x < -2.654378 或 -1.92127 < x < -1.900406 或 0.32961 < x < 0.487215 或 1.220323 < x < 1.241187 或 3.471202 < x < 3.628807 或 4.361915 < x < 4.382779 或 6.612795 < x < 6.7704 (4)
From inequalities (3) and (4)
-8.204455 < x < -8.183591 或 -5.953576 < x < -5.79597 或 -5.062862 < x < -5.041999 或 -2.811983 < x < -2.654378 或 -1.92127 < x < -1.900406 或 0.32961 < x < 0.487215 或 1.220323 < x < 1.241187 或 3.471202 < x < 3.628807 或 4.361915 < x < 4.382779 或 6.612795 < x < 6.7704 (5)
The final solution set is :
-8.204455 < x < -8.183591 或 -5.953576 < x < -5.79597 或 -5.062862 < x < -5.041999 或 -2.811983 < x < -2.654378 或 -1.92127 < x < -1.900406 或 0.32961 < x < 0.487215 或 1.220323 < x < 1.241187 或 3.471202 < x < 3.628807 或 4.361915 < x < 4.382779 或 6.612795 < x < 6.7704 *Note: Radian.Your problem has not been solved here? Please take a look at the hot problems !