current location:Mathematical operation >
History of Inequality Computation > Answer
Overview: 1 questions will be solved this time.Among them
☆1 inequalities
[ 1/1Inequality]
Assignment:Find the solution set of inequality 1449+837n+(25n^2+240n)*(50n^2+240n)/(480+51n)+35.8*(13.6+n)+325*(11.1+n)-1.2[4496+1211n+(214n+3.6n^2)*(214n+7.3n^2)/(428+7.3n)] >= 0 .
Question type: Inequality
Solution:
The inequality can be reduced to 1 inequality:
1449 + 837 * n + ( 25 * n ^ 2 + 240 * n ) * ( 50 * n ^ 2 + 240 * n ) / ( 480 + 51 * n ) + 35.8 * ( 13.6 + n ) + 325 * ( 11.1 + n ) - 1.2 * ( 4496 + 1211 * n + ( 214 * n + 3.6 * n ^ 2 ) * ( 214 * n + 7.3 * n ^ 2 ) / ( 428 + 7.3 * n ) ) >= 0 (1)
From the definition field of divisor
480 + 51 * x ≠ 0 (2 )
From the definition field of divisor
428 + 7.3 * x ≠ 0 (3 )
From inequality(1):
-58.630137 ≤ n ≤ -58.543114 或 -9.536969 ≤ n ≤ -9.411765 或 -3.600203 ≤ n ≤ 0.584909 或 n ≥ 3.444675
From inequality(2):
n < -9.411765 或 n > -9.411765
From inequality(3):
n < -58.630137 或 n > -58.630137
From inequalities (1) and (2)
-58.630137 ≤ n ≤ -58.543114 或 -9.536969 ≤ n < -9.411765 或 -3.600203 ≤ n ≤ 0.584909 或 n ≥ 3.444675 (4)
From inequalities (3) and (4)
-58.630137 < n ≤ -58.543114 或 -9.536969 ≤ n < -9.411765 或 -3.600203 ≤ n ≤ 0.584909 或 n ≥ 3.444675 (5)
The final solution set is :
-58.630137 < n ≤ -58.543114 或 -9.536969 ≤ n < -9.411765 或 -3.600203 ≤ n ≤ 0.584909 或 n ≥ 3.444675Your problem has not been solved here? Please take a look at the hot problems !