Mathematics
语言:中文
Language:English

current location:Mathematical operation > History of Inequality Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 inequalities

[ 1/1Inequality]
    Assignment:Find the solution set of inequality 693.7+513.8n+(20n^2+259.3n)*(40n^2+259.3n)/(518.6+40n)+40.6*(14+n)+322*(9.7+n)-1.2[755.2+1552+891n+1686+(186n+4n^2)*(186n+2.6n^2)/(372+16n)] >= 0 .
    Question type: Inequality
    Solution:
    The inequality can be reduced to 1 inequality:
        693.7 + 513.8 * n + ( 20 * n ^ 2 + 259.3 * n ) * ( 40 * n ^ 2 + 259.3 * n ) / ( 518.6 + 40 * n ) + 40.6 * ( 14 + n ) + 322 * ( 9.7 + n ) - 1.2 * ( 755.2 + 1552 + 891 * n + 1686 + ( 186 * n + 4 * n ^ 2 ) * ( 186 * n + 2.6 * n ^ 2 ) / ( 372 + 16 * n ) ) >= 0         (1)
        From the definition field of divisor
         518.6 + 40 * x ≠ 0        (2 )
        From the definition field of divisor
         372 + 16 * x ≠ 0        (3 )

    From inequality(1):
         -25.315961 ≤ n ≤ -23.25 或  n ≥ 3.464174
    From inequality(2):
         n < -2593/200 或  n > -2593/200
    From inequality(3):
         n < -93/4 或  n > -93/4

    From inequalities (1) and (2)
         -25.315961 ≤ n ≤ -23.25 或  n ≥ 3.464174    (4)
    From inequalities (3) and (4)
         -25.315961 ≤ n < -93/4 或  n ≥ 3.464174    (5)

    The final solution set is :

         -25.315961 ≤ n < -93/4 或  n ≥ 3.464174




Your problem has not been solved here? Please take a look at the  hot problems !


Return