Mathematics
语言:中文
Language:English

current location:Mathematical operation > History of Inequality Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 inequalities

[ 1/1Inequality]
    Assignment:Find the solution set of inequality -1000+(1000)/(1+x)+(200)/(1+x)^2+(200)/(1+x)^3+(200)/(1+x)^4 >0 .
    Question type: Inequality
    Solution:
    The inequality can be reduced to 1 inequality:
        -1000 + ( 1000 ) / ( 1 + x ) + ( 200 ) / ( 1 + x ) ^ 2 + ( 200 ) / ( 1 + x ) ^ 3 + ( 200 ) / ( 1 + x ) ^ 4 >0         (1)
        From the definition field of divisor
         1 + x ≠ 0        (2 )
        From the definition field of divisor
         1 + x ≠ 0        (3 )
        From the definition field of divisor
         1 + x ≠ 0        (4 )
        From the definition field of divisor
         1 + x ≠ 0        (5 )

    From inequality(1):
         -1.46775 < x < 0.342571
    From inequality(2):
         x < -1 或  x > -1
    From inequality(3):
         x < -1 或  x > -1
    From inequality(4):
         x < -1 或  x > -1
    From inequality(5):
         x < -1 或  x > -1

    From inequalities (1) and (2)
         -1.46775 < x < -1 或  -1 < x < 0.342571     (6)
    From inequalities (3) and (6)
         -1.46775 < x < -1 或  -1 < x < 0.342571     (7)
    From inequalities (4) and (7)
         -1.46775 < x < -1 或  -1 < x < 0.342571     (8)
    From inequalities (5) and (8)
         -1.46775 < x < -1 或  -1 < x < 0.342571     (9)

    The final solution set is :

         -1.46775 < x < -1 或  -1 < x < 0.342571




Your problem has not been solved here? Please take a look at the  hot problems !


Return