Mathematics
语言:中文
Language:English

current location:Mathematical operation > History of Inequality Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 inequalities

[ 1/1Inequality]
    Assignment:Find the solution set of inequality (218n+12n^2)*(218n+18n^2)/(436+37n)+520*(1.75+n)-629-292n-1.2[(182n+4.5n^2)*(182n+3n^2)/(364+9n)+17*(13.8+n)+55*(10+n)+220*(6.6+n)+718*(2.2+n) ) >= 0 .
    Question type: Inequality
    Solution:
    The inequality can be reduced to 1 inequality:
         ( 218 * n + 12 * n ^ 2 ) * ( 218 * n + 18 * n ^ 2 ) / ( 436 + 37 * n ) + 520 * ( 1.75 + n ) - 629 - 292 * n - 1.2 * ( ( 182 * n + 4.5 * n ^ 2 ) * ( 182 * n + 3 * n ^ 2 ) / ( 364 + 9 * n ) + 17 * ( 13.8 + n ) + 55 * ( 10 + n ) + 220 * ( 6.6 + n ) + 718 * ( 2.2 + n ) ) >= 0         (1)
        From the definition field of divisor
         436 + 37 * x ≠ 0        (2 )
        From the definition field of divisor
         364 + 9 * x ≠ 0        (3 )

    From inequality(1):
         -11.783784 ≤ n ≤ -4.814003 或  n ≥ 17.547667
    From inequality(2):
         n < -436/37 或  n > -436/37
    From inequality(3):
         n < -364/9 或  n > -364/9

    From inequalities (1) and (2)
         -436/37 < n ≤ -4.814003 或  n ≥ 17.547667    (4)
    From inequalities (3) and (4)
         -436/37 < n ≤ -4.814003 或  n ≥ 17.547667    (5)

    The final solution set is :

         -436/37 < n ≤ -4.814003 或  n ≥ 17.547667




Your problem has not been solved here? Please take a look at the  hot problems !


Return