Mathematics
语言:中文
Language:English

current location:Mathematical operation > History of Inequality Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 inequalities

[ 1/1Inequality]
    Assignment:Find the solution set of inequality (326n+25n^2)*(326n+2.4n^2)/(652+51n)+837*(2+n)-984-356n-1.2[(101n+3.6n^2)*(101n+2.4n^2)/(203+7n)+10*(14+n)+29*(12+n)+241*(6.1+n)+930*(2.7+n) ) >= 0 .
    Question type: Inequality
    Solution:
    The inequality can be reduced to 1 inequality:
         ( 326 * n + 25 * n ^ 2 ) * ( 326 * n + 2.4 * n ^ 2 ) / ( 652 + 51 * n ) + 837 * ( 2 + n ) - 984 - 356 * n - 1.2 * ( ( 101 * n + 3.6 * n ^ 2 ) * ( 101 * n + 2.4 * n ^ 2 ) / ( 203 + 7 * n ) + 10 * ( 14 + n ) + 29 * ( 12 + n ) + 241 * ( 6.1 + n ) + 930 * ( 2.7 + n ) ) >= 0         (1)
        From the definition field of divisor
         652 + 51 * x ≠ 0        (2 )
        From the definition field of divisor
         203 + 7 * x ≠ 0        (3 )

    From inequality(1):
         n ≤ -29.136982 或  -29 ≤ n ≤ -13.028976 或  -12.784314 ≤ n ≤ -3.493507 或  n ≥ 13.576837
    From inequality(2):
         n < -12.784314 或  n > -12.784314
    From inequality(3):
         n < -29 或  n > -29

    From inequalities (1) and (2)
         n ≤ -29.136982 或  -29 ≤ n ≤ -13.028976 或  -12.784314 < n ≤ -3.493507 或  n ≥ 13.576837    (4)
    From inequalities (3) and (4)
         n ≤ -29.136982 或  -29 < n ≤ -13.028976 或  -12.784314 < n ≤ -3.493507 或  n ≥ 13.576837    (5)

    The final solution set is :

         n ≤ -29.136982 或  -29 < n ≤ -13.028976 或  -12.784314 < n ≤ -3.493507 或  n ≥ 13.576837




Your problem has not been solved here? Please take a look at the  hot problems !


Return