Loading [MathJax]/extensions/TeX/AMSmath.js
Mathematics
         
语言:中文    Language:English
Matrix multiplication:
    Enter two matrices that can be multiplied, with each element separated by a comma and each row ending with a semicolon.
    Note that mathematical functions and variables are not supported.
    Current location:Linear algebra >Matrix multiplication >History of matrix multiplication
     \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &0\ &0\ &\frac{1}{10}\ &-\frac{1}{5}\ \\ &\frac{1}{10}\ &0\ &0\ &\frac{1}{2}\ \\ &0\ &0\ &0\ &\frac{1}{5}\ \\ &0\ &0\ &0\ &0\ \end{pmatrix}\times \begin{pmatrix} &1\ &0\ &0\ &-5\ \\ &0\ &0\ &1\ &-6\ \\ &0\ &-1\ &0\ &3\ \\ &0\ &0\ &0\ &1\ \end{pmatrix}}\\ \end{aligned}
     \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &1\ &0\ &\frac{1}{10}\ &\frac{24}{5}\ \\ &\frac{1}{10}\ &0\ &-1\ &\frac{7}{2}\ \\ &0\ &1\ &0\ &\frac{31}{5}\ \\ &0\ &0\ &0\ &1\ \end{pmatrix}\times \begin{pmatrix} &1\ &0\ &0\ &-5\ \\ &0\ &0\ &1\ &-6\ \\ &0\ &-1\ &0\ &3\ \\ &0\ &0\ &0\ &1\ \end{pmatrix}}\\ \end{aligned}
     \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &1\ &1\ &1\ \\ &2\ &2\ &2\ \\ &-1\ &-1\ &-1\ \end{pmatrix}\times \begin{pmatrix} &1\ &1\ &1\ \\ &2\ &2\ &2\ \\ &-1\ &-1\ &-1\ \end{pmatrix}}\\ \end{aligned}
     \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &\frac{433}{500}\ &-\frac{1}{2}\ &0\ \\ &\frac{1}{2}\ &\frac{433}{500}\ &0\ \\ &0\ &0\ &1\ \end{pmatrix}\times \begin{pmatrix} &3\ \\ &5\ \\ &7\ \end{pmatrix}}\\ \end{aligned}
     \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &\frac{3}{2}\ &-\frac{1}{2}\ &0\ \\ &\frac{1}{2}\ &\frac{3}{2}\ &0\ \\ &0\ &0\ &1\ \end{pmatrix}\times \begin{pmatrix} &3\ \\ &5\ \\ &7\ \end{pmatrix}}\\ \end{aligned}

First page << Page48 Page49 Page50 Page51 >> Last page 共51页
The properties of matrix multiplication:


(i) Combining Law: (A b)C=A(b C)
(ii) Distribution Law: A ( B + C ) = A B + A C either or ( A + B ) C = A C + B C .
(iii) λ ( A B ) = ( λ A ) B = A ( λ B ) .
Among them, A, B, and C are the matrices that make the multiplication of the above matrices meaningful, λ It's a number.



  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。