Mathematics
         
语言:中文    Language:English
Matrix multiplication:
    Enter two matrices that can be multiplied, with each element separated by a comma and each row ending with a semicolon.
    Note that mathematical functions and variables are not supported.
    Current location:Linear algebra >Matrix multiplication >History of matrix multiplication
    $$ \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &1\ &8\ &6\ &9\ &3\ &6\ &8\ &4\ \\ &7\ &3\ &6\ &2\ &1\ &7\ &5\ &8\ \\ &2\ &8\ &6\ &9\ &4\ &5\ &2\ &1\ \\ &4\ &2\ &9\ &7\ &7\ &6\ &8\ &2\ \\ &1\ &8\ &3\ &8\ &5\ &9\ &4\ &2\ \\ &9\ &5\ &9\ &4\ &3\ &7\ &4\ &2\ \\ &3\ &9\ &6\ &4\ &3\ &9\ &6\ &5\ \\ &1\ &5\ &3\ &8\ &6\ &4\ &2\ &8\ \end{pmatrix}\times \begin{pmatrix} &1\ &8\ &6\ &9\ &3\ &6\ &8\ &4\ \\ &7\ &3\ &6\ &2\ &1\ &7\ &5\ &8\ \\ &2\ &8\ &6\ &9\ &4\ &5\ &2\ &1\ \\ &4\ &2\ &9\ &7\ &7\ &6\ &8\ &2\ \\ &1\ &8\ &3\ &8\ &5\ &9\ &4\ &2\ \\ &9\ &5\ &9\ &4\ &3\ &7\ &4\ &2\ \\ &3\ &9\ &6\ &4\ &3\ &9\ &6\ &5\ \\ &1\ &5\ &3\ &8\ &6\ &4\ &2\ &8\ \end{pmatrix}}\\ \end{aligned}$$
    $$ \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ \\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ \\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ \\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ \\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ \end{pmatrix}\times \begin{pmatrix} &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ \\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ \\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ \\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ \\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ &\frac{1}{5}\ \end{pmatrix}}\\ \end{aligned}$$
    $$ \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ \\ &\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ \\ &\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ \\ &\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ \end{pmatrix}\times \begin{pmatrix} &\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ \\ &\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ \\ &\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ \\ &\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ \end{pmatrix}}\\ \end{aligned}$$
    $$ \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &0\ \\ &21\ \end{pmatrix}\times \begin{pmatrix} &0\ &21\ \end{pmatrix}}\\ \end{aligned}$$
    $$ \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &1\ &1\ &1\ &1\ \\ &1\ &1\ &1\ &1\ \\ &1\ &1\ &1\ &1\ \\ &1\ &1\ &1\ &1\ \end{pmatrix}\times \begin{pmatrix} &1\ &1\ &1\ &1\ \\ &1\ &1\ &1\ &1\ \\ &1\ &1\ &1\ &1\ \\ &1\ &1\ &1\ &1\ \end{pmatrix}}\\ \end{aligned}$$

First page << Page42 Page43 Page44 Page45 Page46 Page47 Page48 >> Last page 共48页
The properties of matrix multiplication:


(i) Combining Law: (A b)C=A(b C)
(ii) Distribution Law: A ( B + C ) = A B + A C either or ( A + B ) C = A C + B C .
(iii) λ ( A B ) = ( λ A ) B = A ( λ B ) .
Among them, A, B, and C are the matrices that make the multiplication of the above matrices meaningful, λ It's a number.



  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。