Mathematics
         
语言:中文    Language:English
Matrix multiplication:
    Enter two matrices that can be multiplied, with each element separated by a comma and each row ending with a semicolon.
    Note that mathematical functions and variables are not supported.
    Current location:Linear algebra >Matrix multiplication >History of matrix multiplication
    $$ \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &3\ &2\ &1\ \\ &-2\ &1\ &2\ \\ &1\ &3\ &2\ \end{pmatrix}\times \begin{pmatrix} &3\ &2\ &1\ \\ &-2\ &1\ &2\ \\ &1\ &3\ &2\ \end{pmatrix}}\\ \end{aligned}$$
    $$ \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &3\ &2\ &1\ \\ &-2\ &1\ &2\ \\ &1\ &3\ &2\ \end{pmatrix}\times \begin{pmatrix} &1\ &-1\ &0\ \\ &2\ &-2\ &5\ \\ &3\ &4\ &1\ \end{pmatrix}}\\ \end{aligned}$$
    $$ \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &3\ &\frac{3}{2}\ &\frac{3}{4}\ \\ &6\ &3\ &\frac{3}{2}\ \\ &12\ &6\ &3\ \end{pmatrix}\times \begin{pmatrix} &1\ &\frac{1}{2}\ &\frac{1}{4}\ \\ &2\ &1\ &\frac{1}{2}\ \\ &4\ &2\ &1\ \end{pmatrix}}\\ \end{aligned}$$
    $$ \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &1\ &\frac{1}{2}\ &\frac{1}{4}\ \\ &2\ &1\ &\frac{1}{2}\ \\ &4\ &2\ &1\ \end{pmatrix}\times \begin{pmatrix} &1\ &\frac{1}{2}\ &\frac{1}{4}\ \\ &2\ &1\ &\frac{1}{2}\ \\ &4\ &2\ &1\ \end{pmatrix}}\\ \end{aligned}$$
    $$ \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &1\ &1\ &1\ \\ &2\ &2\ &2\ \\ &3\ &3\ &3\ \end{pmatrix}\times \begin{pmatrix} &1\ &2\ &3\ \\ &1\ &2\ &3\ \\ &1\ &2\ &3\ \end{pmatrix}}\\ \end{aligned}$$

First page << Page30 Page31 Page32 Page33 ... ... Page46 Page47 Page48 >> Last page 共48页
The properties of matrix multiplication:


(i) Combining Law: (A b)C=A(b C)
(ii) Distribution Law: A ( B + C ) = A B + A C either or ( A + B ) C = A C + B C .
(iii) λ ( A B ) = ( λ A ) B = A ( λ B ) .
Among them, A, B, and C are the matrices that make the multiplication of the above matrices meaningful, λ It's a number.



  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。