Loading web-font TeX/Math/Italic
Mathematics
         
语言:中文    Language:English
Matrix multiplication:
    Enter two matrices that can be multiplied, with each element separated by a comma and each row ending with a semicolon.
    Note that mathematical functions and variables are not supported.
    Current location:Linear algebra >Matrix multiplication >History of matrix multiplication
     \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &2\ &1\ &2\ &1\ \\ &3\ &4\ &3\ &2\ \\ &6\ &7\ &8\ &9\ \\ &10\ &11\ &12\ &13\ \end{pmatrix}\times \begin{pmatrix} &4\ &2\ &4\ &2\ \\ &8\ &16\ &8\ &4\ \\ &64\ &128\ &256\ &512\ \\ &1024\ &2048\ &4096\ &8192\ \end{pmatrix}}\\ \end{aligned}

     \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &0\ &\frac{1}{3}\ &\frac{1}{3}\ \\ &0\ &-\frac{2}{3}\ &\frac{1}{3}\ \\ &-1\ &-\frac{1}{3}\ &\frac{2}{3}\ \end{pmatrix}\times \begin{pmatrix} &1\ &0\ &0\ \\ &0\ &1\ &0\ \\ &0\ &0\ &1\ \end{pmatrix}}\\ \end{aligned}

     \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &1\ &1\ &-1\ \\ &0\ &2\ &2\ \\ &1\ &-1\ &0\ \end{pmatrix}\times \begin{pmatrix} &\frac{1}{3}\ &\frac{1}{6}\ &\frac{2}{3}\ \\ &\frac{1}{3}\ &\frac{1}{6}\ &-\frac{1}{3}\ \\ &-\frac{1}{3}\ &\frac{1}{3}\ &\frac{1}{3}\ \end{pmatrix}}\\ \end{aligned}

     \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &1\ &9\ \\ &2\ &7\ \end{pmatrix}\times \begin{pmatrix} &1\ &9\ \\ &3\ &9\ \end{pmatrix}}\\ \end{aligned}

     \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &71\ \end{pmatrix}\times \begin{pmatrix} &\frac{9539}{500}\ \end{pmatrix}}\\ \end{aligned}


First page << Page13 Page14 Page15 Page16 ... ... Page30 Page31 Page32 >> Last page 共51页
The properties of matrix multiplication:


(i) Combining Law: (A b)C=A(b C)
(ii) Distribution Law: A ( B + C ) = A B + A C either or ( A + B ) C = A C + B C .
(iii) λ ( A B ) = ( λ A ) B = A ( λ B ) .
Among them, A, B, and C are the matrices that make the multiplication of the above matrices meaningful, λ It's a number.



  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。