There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{((\frac{200(x - 400)}{1900}) + 50)}{1000})(\frac{((\frac{200(x - 400)}{1900}) + 1400)}{1000}) + 1 - (((\frac{200(x - 400)}{1900}) + \frac{50}{1000}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{90250000}x^{2} - \frac{379481}{3610000}x + \frac{777341}{18050}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{90250000}x^{2} - \frac{379481}{3610000}x + \frac{777341}{18050}\right)}{dx}\\=&\frac{1}{90250000}*2x - \frac{379481}{3610000} + 0\\=&\frac{x}{45125000} - \frac{379481}{3610000}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!