There are 1 questions in this calculation: for each question, the 1 derivative of n is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (27n - 27){({(n - 4 + \frac{14}{n})}^{\frac{1}{2}})}^{5} - (27{n}^{2} - 99n + 180){({(n - 4 + \frac{14}{n})}^{\frac{1}{2}})}^{3} - (52n - 16)(n - 4 + \frac{14}{n}) + (36{n}^{2} - 228n + 288)({(n - 4 + \frac{14}{n})}^{\frac{1}{2}}) + 16{n}^{2} - 96n + 128\ with\ respect\ to\ n:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 27(n + \frac{14}{n} - 4)^{\frac{5}{2}}n - 27(n + \frac{14}{n} - 4)^{\frac{3}{2}}n^{2} + 99(n + \frac{14}{n} - 4)^{\frac{3}{2}}n + 36(n + \frac{14}{n} - 4)^{\frac{1}{2}}n^{2} - 228(n + \frac{14}{n} - 4)^{\frac{1}{2}}n - 36n^{2} + 128n - 27(n + \frac{14}{n} - 4)^{\frac{5}{2}} + \frac{224}{n} - 180(n + \frac{14}{n} - 4)^{\frac{3}{2}} + 288(n + \frac{14}{n} - 4)^{\frac{1}{2}} - 664\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 27(n + \frac{14}{n} - 4)^{\frac{5}{2}}n - 27(n + \frac{14}{n} - 4)^{\frac{3}{2}}n^{2} + 99(n + \frac{14}{n} - 4)^{\frac{3}{2}}n + 36(n + \frac{14}{n} - 4)^{\frac{1}{2}}n^{2} - 228(n + \frac{14}{n} - 4)^{\frac{1}{2}}n - 36n^{2} + 128n - 27(n + \frac{14}{n} - 4)^{\frac{5}{2}} + \frac{224}{n} - 180(n + \frac{14}{n} - 4)^{\frac{3}{2}} + 288(n + \frac{14}{n} - 4)^{\frac{1}{2}} - 664\right)}{dn}\\=&27(\frac{5}{2}(n + \frac{14}{n} - 4)^{\frac{3}{2}}(1 + \frac{14*-1}{n^{2}} + 0))n + 27(n + \frac{14}{n} - 4)^{\frac{5}{2}} - 27(\frac{3}{2}(n + \frac{14}{n} - 4)^{\frac{1}{2}}(1 + \frac{14*-1}{n^{2}} + 0))n^{2} - 27(n + \frac{14}{n} - 4)^{\frac{3}{2}}*2n + 99(\frac{3}{2}(n + \frac{14}{n} - 4)^{\frac{1}{2}}(1 + \frac{14*-1}{n^{2}} + 0))n + 99(n + \frac{14}{n} - 4)^{\frac{3}{2}} + 36(\frac{\frac{1}{2}(1 + \frac{14*-1}{n^{2}} + 0)}{(n + \frac{14}{n} - 4)^{\frac{1}{2}}})n^{2} + 36(n + \frac{14}{n} - 4)^{\frac{1}{2}}*2n - 228(\frac{\frac{1}{2}(1 + \frac{14*-1}{n^{2}} + 0)}{(n + \frac{14}{n} - 4)^{\frac{1}{2}}})n - 228(n + \frac{14}{n} - 4)^{\frac{1}{2}} - 36*2n + 128 - 27(\frac{5}{2}(n + \frac{14}{n} - 4)^{\frac{3}{2}}(1 + \frac{14*-1}{n^{2}} + 0)) + \frac{224*-1}{n^{2}} - 180(\frac{3}{2}(n + \frac{14}{n} - 4)^{\frac{1}{2}}(1 + \frac{14*-1}{n^{2}} + 0)) + 288(\frac{\frac{1}{2}(1 + \frac{14*-1}{n^{2}} + 0)}{(n + \frac{14}{n} - 4)^{\frac{1}{2}}}) + 0\\=& - \frac{945(n + \frac{14}{n} - 4)^{\frac{3}{2}}}{n} + \frac{27(n + \frac{14}{n} - 4)^{\frac{3}{2}}n}{2} - \frac{2079(n + \frac{14}{n} - 4)^{\frac{1}{2}}}{n} + \frac{441(n + \frac{14}{n} - 4)^{\frac{1}{2}}n}{2} + \frac{1596}{(n + \frac{14}{n} - 4)^{\frac{1}{2}}n} - \frac{81(n + \frac{14}{n} - 4)^{\frac{1}{2}}n^{2}}{2} + \frac{18n^{2}}{(n + \frac{14}{n} - 4)^{\frac{1}{2}}} - \frac{114n}{(n + \frac{14}{n} - 4)^{\frac{1}{2}}} + \frac{945(n + \frac{14}{n} - 4)^{\frac{3}{2}}}{n^{2}} + \frac{3780(n + \frac{14}{n} - 4)^{\frac{1}{2}}}{n^{2}} - \frac{2016}{(n + \frac{14}{n} - 4)^{\frac{1}{2}}n^{2}} + \frac{63(n + \frac{14}{n} - 4)^{\frac{3}{2}}}{2} - 72n + 69(n + \frac{14}{n} - 4)^{\frac{1}{2}} - \frac{108}{(n + \frac{14}{n} - 4)^{\frac{1}{2}}} - \frac{224}{n^{2}} + 27(n + \frac{14}{n} - 4)^{\frac{5}{2}} + 128\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!