Mathematics
         
语言:中文    Language:English
Derivative function:
    Enter an original function (that is, the function to be derived), then set the variable to be derived and the order of the derivative, and click the "Next" button to obtain the derivative function of the corresponding order of the function.
    Note that the input function supports mathematical functions and other constants.
    Current location:Derivative function > Derivative function calculation history > Answer

    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {(ax)}^{(x - 2a)}x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x(ax)^{(x - 2a)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x(ax)^{(x - 2a)}\right)}{dx}\\=&(ax)^{(x - 2a)} + x((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)}))\\=&(ax)^{(x - 2a)} + x(ax)^{(x - 2a)}ln(ax) + x(ax)^{(x - 2a)} - 2a(ax)^{(x - 2a)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( (ax)^{(x - 2a)} + x(ax)^{(x - 2a)}ln(ax) + x(ax)^{(x - 2a)} - 2a(ax)^{(x - 2a)}\right)}{dx}\\=&((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)})) + (ax)^{(x - 2a)}ln(ax) + x((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)}))ln(ax) + \frac{x(ax)^{(x - 2a)}a}{(ax)} + (ax)^{(x - 2a)} + x((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)})) - 2a((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)}))\\=&2(ax)^{(x - 2a)}ln(ax) + 3(ax)^{(x - 2a)} - \frac{2a(ax)^{(x - 2a)}}{x} + x(ax)^{(x - 2a)}ln^{2}(ax) + 2x(ax)^{(x - 2a)}ln(ax) - 4a(ax)^{(x - 2a)}ln(ax) + x(ax)^{(x - 2a)} - 4a(ax)^{(x - 2a)} + \frac{4a^{2}(ax)^{(x - 2a)}}{x}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 2(ax)^{(x - 2a)}ln(ax) + 3(ax)^{(x - 2a)} - \frac{2a(ax)^{(x - 2a)}}{x} + x(ax)^{(x - 2a)}ln^{2}(ax) + 2x(ax)^{(x - 2a)}ln(ax) - 4a(ax)^{(x - 2a)}ln(ax) + x(ax)^{(x - 2a)} - 4a(ax)^{(x - 2a)} + \frac{4a^{2}(ax)^{(x - 2a)}}{x}\right)}{dx}\\=&2((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)}))ln(ax) + \frac{2(ax)^{(x - 2a)}a}{(ax)} + 3((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)})) - \frac{2a*-(ax)^{(x - 2a)}}{x^{2}} - \frac{2a((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)}))}{x} + (ax)^{(x - 2a)}ln^{2}(ax) + x((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)}))ln^{2}(ax) + \frac{x(ax)^{(x - 2a)}*2ln(ax)a}{(ax)} + 2(ax)^{(x - 2a)}ln(ax) + 2x((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)}))ln(ax) + \frac{2x(ax)^{(x - 2a)}a}{(ax)} - 4a((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)}))ln(ax) - \frac{4a(ax)^{(x - 2a)}a}{(ax)} + (ax)^{(x - 2a)} + x((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)})) - 4a((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)})) + \frac{4a^{2}*-(ax)^{(x - 2a)}}{x^{2}} + \frac{4a^{2}((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)}))}{x}\\=&3(ax)^{(x - 2a)}ln^{2}(ax) + 9(ax)^{(x - 2a)}ln(ax) - \frac{6a(ax)^{(x - 2a)}ln(ax)}{x} + x(ax)^{(x - 2a)}ln^{3}(ax) + 6(ax)^{(x - 2a)} + \frac{12a^{2}(ax)^{(x - 2a)}ln(ax)}{x} + \frac{2a(ax)^{(x - 2a)}}{x^{2}} + 3x(ax)^{(x - 2a)}ln^{2}(ax) + 3x(ax)^{(x - 2a)}ln(ax) - 6a(ax)^{(x - 2a)}ln^{2}(ax) + \frac{2(ax)^{(x - 2a)}}{x} - 12a(ax)^{(x - 2a)}ln(ax) - \frac{12a(ax)^{(x - 2a)}}{x} + x(ax)^{(x - 2a)} - 6a(ax)^{(x - 2a)} + \frac{12a^{2}(ax)^{(x - 2a)}}{x} - \frac{8a^{3}(ax)^{(x - 2a)}}{x^{2}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 3(ax)^{(x - 2a)}ln^{2}(ax) + 9(ax)^{(x - 2a)}ln(ax) - \frac{6a(ax)^{(x - 2a)}ln(ax)}{x} + x(ax)^{(x - 2a)}ln^{3}(ax) + 6(ax)^{(x - 2a)} + \frac{12a^{2}(ax)^{(x - 2a)}ln(ax)}{x} + \frac{2a(ax)^{(x - 2a)}}{x^{2}} + 3x(ax)^{(x - 2a)}ln^{2}(ax) + 3x(ax)^{(x - 2a)}ln(ax) - 6a(ax)^{(x - 2a)}ln^{2}(ax) + \frac{2(ax)^{(x - 2a)}}{x} - 12a(ax)^{(x - 2a)}ln(ax) - \frac{12a(ax)^{(x - 2a)}}{x} + x(ax)^{(x - 2a)} - 6a(ax)^{(x - 2a)} + \frac{12a^{2}(ax)^{(x - 2a)}}{x} - \frac{8a^{3}(ax)^{(x - 2a)}}{x^{2}}\right)}{dx}\\=&3((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)}))ln^{2}(ax) + \frac{3(ax)^{(x - 2a)}*2ln(ax)a}{(ax)} + 9((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)}))ln(ax) + \frac{9(ax)^{(x - 2a)}a}{(ax)} - \frac{6a*-(ax)^{(x - 2a)}ln(ax)}{x^{2}} - \frac{6a((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)}))ln(ax)}{x} - \frac{6a(ax)^{(x - 2a)}a}{x(ax)} + (ax)^{(x - 2a)}ln^{3}(ax) + x((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)}))ln^{3}(ax) + \frac{x(ax)^{(x - 2a)}*3ln^{2}(ax)a}{(ax)} + 6((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)})) + \frac{12a^{2}*-(ax)^{(x - 2a)}ln(ax)}{x^{2}} + \frac{12a^{2}((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)}))ln(ax)}{x} + \frac{12a^{2}(ax)^{(x - 2a)}a}{x(ax)} + \frac{2a*-2(ax)^{(x - 2a)}}{x^{3}} + \frac{2a((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)}))}{x^{2}} + 3(ax)^{(x - 2a)}ln^{2}(ax) + 3x((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)}))ln^{2}(ax) + \frac{3x(ax)^{(x - 2a)}*2ln(ax)a}{(ax)} + 3(ax)^{(x - 2a)}ln(ax) + 3x((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)}))ln(ax) + \frac{3x(ax)^{(x - 2a)}a}{(ax)} - 6a((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)}))ln^{2}(ax) - \frac{6a(ax)^{(x - 2a)}*2ln(ax)a}{(ax)} + \frac{2*-(ax)^{(x - 2a)}}{x^{2}} + \frac{2((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)}))}{x} - 12a((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)}))ln(ax) - \frac{12a(ax)^{(x - 2a)}a}{(ax)} - \frac{12a*-(ax)^{(x - 2a)}}{x^{2}} - \frac{12a((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)}))}{x} + (ax)^{(x - 2a)} + x((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)})) - 6a((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)})) + \frac{12a^{2}*-(ax)^{(x - 2a)}}{x^{2}} + \frac{12a^{2}((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)}))}{x} - \frac{8a^{3}*-2(ax)^{(x - 2a)}}{x^{3}} - \frac{8a^{3}((ax)^{(x - 2a)}((1 + 0)ln(ax) + \frac{(x - 2a)(a)}{(ax)}))}{x^{2}}\\=&4(ax)^{(x - 2a)}ln^{3}(ax) + 18(ax)^{(x - 2a)}ln^{2}(ax) - \frac{12a(ax)^{(x - 2a)}ln^{2}(ax)}{x} + \frac{8(ax)^{(x - 2a)}ln(ax)}{x} + 24(ax)^{(x - 2a)}ln(ax) - \frac{48a(ax)^{(x - 2a)}ln(ax)}{x} + x(ax)^{(x - 2a)}ln^{4}(ax) + \frac{8a(ax)^{(x - 2a)}ln(ax)}{x^{2}} + 4x(ax)^{(x - 2a)}ln^{3}(ax) + 6x(ax)^{(x - 2a)}ln^{2}(ax) - 8a(ax)^{(x - 2a)}ln^{3}(ax) + 10(ax)^{(x - 2a)} + \frac{24a^{2}(ax)^{(x - 2a)}ln^{2}(ax)}{x} + \frac{48a^{2}(ax)^{(x - 2a)}ln(ax)}{x} - \frac{32a^{3}(ax)^{(x - 2a)}ln(ax)}{x^{2}} - \frac{36a(ax)^{(x - 2a)}}{x} - \frac{4a(ax)^{(x - 2a)}}{x^{3}} + \frac{4a(ax)^{(x - 2a)}}{x^{2}} - \frac{4a^{2}(ax)^{(x - 2a)}}{x^{3}} + 4x(ax)^{(x - 2a)}ln(ax) - 24a(ax)^{(x - 2a)}ln^{2}(ax) + \frac{11(ax)^{(x - 2a)}}{x} - 24a(ax)^{(x - 2a)}ln(ax) - \frac{2(ax)^{(x - 2a)}}{x^{2}} + \frac{24a^{2}(ax)^{(x - 2a)}}{x^{2}} + x(ax)^{(x - 2a)} - 8a(ax)^{(x - 2a)} + \frac{24a^{2}(ax)^{(x - 2a)}}{x} - \frac{32a^{3}(ax)^{(x - 2a)}}{x^{2}} + \frac{16a^{3}(ax)^{(x - 2a)}}{x^{3}} + \frac{16a^{4}(ax)^{(x - 2a)}}{x^{3}}\\ \end{split}\end{equation} \]



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。