Mathematics
         
语言:中文    Language:English
Derivative function:
    Enter an original function (that is, the function to be derived), then set the variable to be derived and the order of the derivative, and click the "Next" button to obtain the derivative function of the corresponding order of the function.
    Note that the input function supports mathematical functions and other constants.
    Current location:Derivative function > Derivative function calculation history > Answer

    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ tan(e^{x}{x}^{2} + lg(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = tan(x^{2}e^{x} + lg(x))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( tan(x^{2}e^{x} + lg(x))\right)}{dx}\\=&sec^{2}(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})\\=&2xe^{x}sec^{2}(x^{2}e^{x} + lg(x)) + x^{2}e^{x}sec^{2}(x^{2}e^{x} + lg(x)) + \frac{sec^{2}(x^{2}e^{x} + lg(x))}{xln{10}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2xe^{x}sec^{2}(x^{2}e^{x} + lg(x)) + x^{2}e^{x}sec^{2}(x^{2}e^{x} + lg(x)) + \frac{sec^{2}(x^{2}e^{x} + lg(x))}{xln{10}}\right)}{dx}\\=&2e^{x}sec^{2}(x^{2}e^{x} + lg(x)) + 2xe^{x}sec^{2}(x^{2}e^{x} + lg(x)) + 2xe^{x}*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)}) + 2xe^{x}sec^{2}(x^{2}e^{x} + lg(x)) + x^{2}e^{x}sec^{2}(x^{2}e^{x} + lg(x)) + x^{2}e^{x}*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)}) + \frac{-sec^{2}(x^{2}e^{x} + lg(x))}{x^{2}ln{10}} + \frac{-0sec^{2}(x^{2}e^{x} + lg(x))}{xln^{2}{10}} + \frac{2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})}{xln{10}}\\=&2e^{x}sec^{2}(x^{2}e^{x} + lg(x)) + 4xe^{x}sec^{2}(x^{2}e^{x} + lg(x)) + 8x^{2}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 8x^{3}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + \frac{8e^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + x^{2}e^{x}sec^{2}(x^{2}e^{x} + lg(x)) + 2x^{4}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + \frac{4xe^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} - \frac{sec^{2}(x^{2}e^{x} + lg(x))}{x^{2}ln{10}} + \frac{2tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{x^{2}ln^{2}{10}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 2e^{x}sec^{2}(x^{2}e^{x} + lg(x)) + 4xe^{x}sec^{2}(x^{2}e^{x} + lg(x)) + 8x^{2}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 8x^{3}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + \frac{8e^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + x^{2}e^{x}sec^{2}(x^{2}e^{x} + lg(x)) + 2x^{4}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + \frac{4xe^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} - \frac{sec^{2}(x^{2}e^{x} + lg(x))}{x^{2}ln{10}} + \frac{2tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{x^{2}ln^{2}{10}}\right)}{dx}\\=&2e^{x}sec^{2}(x^{2}e^{x} + lg(x)) + 2e^{x}*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)}) + 4e^{x}sec^{2}(x^{2}e^{x} + lg(x)) + 4xe^{x}sec^{2}(x^{2}e^{x} + lg(x)) + 4xe^{x}*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)}) + 8*2xe^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 8x^{2}*2e^{x}e^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 8x^{2}e^{{x}*{2}}sec^{2}(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})sec^{2}(x^{2}e^{x} + lg(x)) + 8x^{2}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)}) + 8*3x^{2}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 8x^{3}*2e^{x}e^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 8x^{3}e^{{x}*{2}}sec^{2}(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})sec^{2}(x^{2}e^{x} + lg(x)) + 8x^{3}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)}) + \frac{8e^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{8e^{x}*-0tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} + \frac{8e^{x}sec^{2}(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{8e^{x}tan(x^{2}e^{x} + lg(x))*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})}{ln{10}} + 2xe^{x}sec^{2}(x^{2}e^{x} + lg(x)) + x^{2}e^{x}sec^{2}(x^{2}e^{x} + lg(x)) + x^{2}e^{x}*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)}) + 2*4x^{3}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 2x^{4}*2e^{x}e^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 2x^{4}e^{{x}*{2}}sec^{2}(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})sec^{2}(x^{2}e^{x} + lg(x)) + 2x^{4}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)}) + \frac{4e^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{4xe^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{4xe^{x}*-0tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} + \frac{4xe^{x}sec^{2}(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{4xe^{x}tan(x^{2}e^{x} + lg(x))*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})}{ln{10}} - \frac{-2sec^{2}(x^{2}e^{x} + lg(x))}{x^{3}ln{10}} - \frac{-0sec^{2}(x^{2}e^{x} + lg(x))}{x^{2}ln^{2}{10}} - \frac{2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})}{x^{2}ln{10}} + \frac{2*-2tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{x^{3}ln^{2}{10}} + \frac{2*-2*0tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{x^{2}ln^{3}{10}} + \frac{2sec^{2}(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})sec^{2}(x^{2}e^{x} + lg(x))}{x^{2}ln^{2}{10}} + \frac{2tan(x^{2}e^{x} + lg(x))*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})}{x^{2}ln^{2}{10}}\\=&6e^{x}sec^{2}(x^{2}e^{x} + lg(x)) + 24xe^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 60x^{2}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 6xe^{x}sec^{2}(x^{2}e^{x} + lg(x)) + 36x^{3}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + \frac{18e^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + 16x^{3}e^{{x}*{3}}sec^{4}(x^{2}e^{x} + lg(x)) + 24x^{4}e^{{x}*{3}}sec^{4}(x^{2}e^{x} + lg(x)) + \frac{24xe^{{x}*{2}}sec^{4}(x^{2}e^{x} + lg(x))}{ln{10}} + 32x^{3}e^{{x}*{3}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 48x^{4}e^{{x}*{3}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + \frac{48xe^{{x}*{2}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + 12x^{5}e^{{x}*{3}}sec^{4}(x^{2}e^{x} + lg(x)) + \frac{24x^{2}e^{{x}*{2}}sec^{4}(x^{2}e^{x} + lg(x))}{ln{10}} + 24x^{5}e^{{x}*{3}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + \frac{48x^{2}e^{{x}*{2}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{12e^{x}sec^{4}(x^{2}e^{x} + lg(x))}{xln^{2}{10}} + \frac{24e^{x}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{xln^{2}{10}} + x^{2}e^{x}sec^{2}(x^{2}e^{x} + lg(x)) + 6x^{4}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + \frac{6xe^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + 2x^{6}e^{{x}*{3}}sec^{4}(x^{2}e^{x} + lg(x)) + \frac{6x^{3}e^{{x}*{2}}sec^{4}(x^{2}e^{x} + lg(x))}{ln{10}} + 4x^{6}e^{{x}*{3}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + \frac{12x^{3}e^{{x}*{2}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{6e^{x}sec^{4}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} + \frac{12e^{x}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} + \frac{2sec^{2}(x^{2}e^{x} + lg(x))}{x^{3}ln{10}} - \frac{6tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{x^{3}ln^{2}{10}} + \frac{2sec^{4}(x^{2}e^{x} + lg(x))}{x^{3}ln^{3}{10}} + \frac{4tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{x^{3}ln^{3}{10}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 6e^{x}sec^{2}(x^{2}e^{x} + lg(x)) + 24xe^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 60x^{2}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 6xe^{x}sec^{2}(x^{2}e^{x} + lg(x)) + 36x^{3}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + \frac{18e^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + 16x^{3}e^{{x}*{3}}sec^{4}(x^{2}e^{x} + lg(x)) + 24x^{4}e^{{x}*{3}}sec^{4}(x^{2}e^{x} + lg(x)) + \frac{24xe^{{x}*{2}}sec^{4}(x^{2}e^{x} + lg(x))}{ln{10}} + 32x^{3}e^{{x}*{3}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 48x^{4}e^{{x}*{3}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + \frac{48xe^{{x}*{2}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + 12x^{5}e^{{x}*{3}}sec^{4}(x^{2}e^{x} + lg(x)) + \frac{24x^{2}e^{{x}*{2}}sec^{4}(x^{2}e^{x} + lg(x))}{ln{10}} + 24x^{5}e^{{x}*{3}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + \frac{48x^{2}e^{{x}*{2}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{12e^{x}sec^{4}(x^{2}e^{x} + lg(x))}{xln^{2}{10}} + \frac{24e^{x}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{xln^{2}{10}} + x^{2}e^{x}sec^{2}(x^{2}e^{x} + lg(x)) + 6x^{4}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + \frac{6xe^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + 2x^{6}e^{{x}*{3}}sec^{4}(x^{2}e^{x} + lg(x)) + \frac{6x^{3}e^{{x}*{2}}sec^{4}(x^{2}e^{x} + lg(x))}{ln{10}} + 4x^{6}e^{{x}*{3}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + \frac{12x^{3}e^{{x}*{2}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{6e^{x}sec^{4}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} + \frac{12e^{x}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} + \frac{2sec^{2}(x^{2}e^{x} + lg(x))}{x^{3}ln{10}} - \frac{6tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{x^{3}ln^{2}{10}} + \frac{2sec^{4}(x^{2}e^{x} + lg(x))}{x^{3}ln^{3}{10}} + \frac{4tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{x^{3}ln^{3}{10}}\right)}{dx}\\=&6e^{x}sec^{2}(x^{2}e^{x} + lg(x)) + 6e^{x}*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)}) + 24e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 24x*2e^{x}e^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 24xe^{{x}*{2}}sec^{2}(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})sec^{2}(x^{2}e^{x} + lg(x)) + 24xe^{{x}*{2}}tan(x^{2}e^{x} + lg(x))*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)}) + 60*2xe^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 60x^{2}*2e^{x}e^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 60x^{2}e^{{x}*{2}}sec^{2}(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})sec^{2}(x^{2}e^{x} + lg(x)) + 60x^{2}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)}) + 6e^{x}sec^{2}(x^{2}e^{x} + lg(x)) + 6xe^{x}sec^{2}(x^{2}e^{x} + lg(x)) + 6xe^{x}*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)}) + 36*3x^{2}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 36x^{3}*2e^{x}e^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 36x^{3}e^{{x}*{2}}sec^{2}(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})sec^{2}(x^{2}e^{x} + lg(x)) + 36x^{3}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)}) + \frac{18e^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{18e^{x}*-0tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} + \frac{18e^{x}sec^{2}(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{18e^{x}tan(x^{2}e^{x} + lg(x))*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})}{ln{10}} + 16*3x^{2}e^{{x}*{3}}sec^{4}(x^{2}e^{x} + lg(x)) + 16x^{3}*3e^{{x}*{2}}e^{x}sec^{4}(x^{2}e^{x} + lg(x)) + 16x^{3}e^{{x}*{3}}*4sec^{4}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)}) + 24*4x^{3}e^{{x}*{3}}sec^{4}(x^{2}e^{x} + lg(x)) + 24x^{4}*3e^{{x}*{2}}e^{x}sec^{4}(x^{2}e^{x} + lg(x)) + 24x^{4}e^{{x}*{3}}*4sec^{4}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)}) + \frac{24e^{{x}*{2}}sec^{4}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{24x*2e^{x}e^{x}sec^{4}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{24xe^{{x}*{2}}*-0sec^{4}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} + \frac{24xe^{{x}*{2}}*4sec^{4}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})}{ln{10}} + 32*3x^{2}e^{{x}*{3}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 32x^{3}*3e^{{x}*{2}}e^{x}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 32x^{3}e^{{x}*{3}}*2tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})sec^{2}(x^{2}e^{x} + lg(x)) + 32x^{3}e^{{x}*{3}}tan^{2}(x^{2}e^{x} + lg(x))*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)}) + 48*4x^{3}e^{{x}*{3}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 48x^{4}*3e^{{x}*{2}}e^{x}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 48x^{4}e^{{x}*{3}}*2tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})sec^{2}(x^{2}e^{x} + lg(x)) + 48x^{4}e^{{x}*{3}}tan^{2}(x^{2}e^{x} + lg(x))*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)}) + \frac{48e^{{x}*{2}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{48x*2e^{x}e^{x}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{48xe^{{x}*{2}}*-0tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} + \frac{48xe^{{x}*{2}}*2tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{48xe^{{x}*{2}}tan^{2}(x^{2}e^{x} + lg(x))*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})}{ln{10}} + 12*5x^{4}e^{{x}*{3}}sec^{4}(x^{2}e^{x} + lg(x)) + 12x^{5}*3e^{{x}*{2}}e^{x}sec^{4}(x^{2}e^{x} + lg(x)) + 12x^{5}e^{{x}*{3}}*4sec^{4}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)}) + \frac{24*2xe^{{x}*{2}}sec^{4}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{24x^{2}*2e^{x}e^{x}sec^{4}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{24x^{2}e^{{x}*{2}}*-0sec^{4}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} + \frac{24x^{2}e^{{x}*{2}}*4sec^{4}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})}{ln{10}} + 24*5x^{4}e^{{x}*{3}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 24x^{5}*3e^{{x}*{2}}e^{x}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 24x^{5}e^{{x}*{3}}*2tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})sec^{2}(x^{2}e^{x} + lg(x)) + 24x^{5}e^{{x}*{3}}tan^{2}(x^{2}e^{x} + lg(x))*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)}) + \frac{48*2xe^{{x}*{2}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{48x^{2}*2e^{x}e^{x}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{48x^{2}e^{{x}*{2}}*-0tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} + \frac{48x^{2}e^{{x}*{2}}*2tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{48x^{2}e^{{x}*{2}}tan^{2}(x^{2}e^{x} + lg(x))*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})}{ln{10}} + \frac{12*-e^{x}sec^{4}(x^{2}e^{x} + lg(x))}{x^{2}ln^{2}{10}} + \frac{12e^{x}sec^{4}(x^{2}e^{x} + lg(x))}{xln^{2}{10}} + \frac{12e^{x}*-2*0sec^{4}(x^{2}e^{x} + lg(x))}{xln^{3}{10}} + \frac{12e^{x}*4sec^{4}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})}{xln^{2}{10}} + \frac{24*-e^{x}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{x^{2}ln^{2}{10}} + \frac{24e^{x}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{xln^{2}{10}} + \frac{24e^{x}*-2*0tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{xln^{3}{10}} + \frac{24e^{x}*2tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})sec^{2}(x^{2}e^{x} + lg(x))}{xln^{2}{10}} + \frac{24e^{x}tan^{2}(x^{2}e^{x} + lg(x))*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})}{xln^{2}{10}} + 2xe^{x}sec^{2}(x^{2}e^{x} + lg(x)) + x^{2}e^{x}sec^{2}(x^{2}e^{x} + lg(x)) + x^{2}e^{x}*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)}) + 6*4x^{3}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 6x^{4}*2e^{x}e^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 6x^{4}e^{{x}*{2}}sec^{2}(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})sec^{2}(x^{2}e^{x} + lg(x)) + 6x^{4}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)}) + \frac{6e^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{6xe^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{6xe^{x}*-0tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} + \frac{6xe^{x}sec^{2}(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{6xe^{x}tan(x^{2}e^{x} + lg(x))*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})}{ln{10}} + 2*6x^{5}e^{{x}*{3}}sec^{4}(x^{2}e^{x} + lg(x)) + 2x^{6}*3e^{{x}*{2}}e^{x}sec^{4}(x^{2}e^{x} + lg(x)) + 2x^{6}e^{{x}*{3}}*4sec^{4}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)}) + \frac{6*3x^{2}e^{{x}*{2}}sec^{4}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{6x^{3}*2e^{x}e^{x}sec^{4}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{6x^{3}e^{{x}*{2}}*-0sec^{4}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} + \frac{6x^{3}e^{{x}*{2}}*4sec^{4}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})}{ln{10}} + 4*6x^{5}e^{{x}*{3}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 4x^{6}*3e^{{x}*{2}}e^{x}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 4x^{6}e^{{x}*{3}}*2tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})sec^{2}(x^{2}e^{x} + lg(x)) + 4x^{6}e^{{x}*{3}}tan^{2}(x^{2}e^{x} + lg(x))*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)}) + \frac{12*3x^{2}e^{{x}*{2}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{12x^{3}*2e^{x}e^{x}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{12x^{3}e^{{x}*{2}}*-0tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} + \frac{12x^{3}e^{{x}*{2}}*2tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{12x^{3}e^{{x}*{2}}tan^{2}(x^{2}e^{x} + lg(x))*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})}{ln{10}} + \frac{6e^{x}sec^{4}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} + \frac{6e^{x}*-2*0sec^{4}(x^{2}e^{x} + lg(x))}{ln^{3}{10}} + \frac{6e^{x}*4sec^{4}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})}{ln^{2}{10}} + \frac{12e^{x}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} + \frac{12e^{x}*-2*0tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln^{3}{10}} + \frac{12e^{x}*2tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})sec^{2}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} + \frac{12e^{x}tan^{2}(x^{2}e^{x} + lg(x))*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})}{ln^{2}{10}} + \frac{2*-3sec^{2}(x^{2}e^{x} + lg(x))}{x^{4}ln{10}} + \frac{2*-0sec^{2}(x^{2}e^{x} + lg(x))}{x^{3}ln^{2}{10}} + \frac{2*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})}{x^{3}ln{10}} - \frac{6*-3tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{x^{4}ln^{2}{10}} - \frac{6*-2*0tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{x^{3}ln^{3}{10}} - \frac{6sec^{2}(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})sec^{2}(x^{2}e^{x} + lg(x))}{x^{3}ln^{2}{10}} - \frac{6tan(x^{2}e^{x} + lg(x))*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})}{x^{3}ln^{2}{10}} + \frac{2*-3sec^{4}(x^{2}e^{x} + lg(x))}{x^{4}ln^{3}{10}} + \frac{2*-3*0sec^{4}(x^{2}e^{x} + lg(x))}{x^{3}ln^{4}{10}} + \frac{2*4sec^{4}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})}{x^{3}ln^{3}{10}} + \frac{4*-3tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{x^{4}ln^{3}{10}} + \frac{4*-3*0tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{x^{3}ln^{4}{10}} + \frac{4*2tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})sec^{2}(x^{2}e^{x} + lg(x))}{x^{3}ln^{3}{10}} + \frac{4tan^{2}(x^{2}e^{x} + lg(x))*2sec^{2}(x^{2}e^{x} + lg(x))tan(x^{2}e^{x} + lg(x))(2xe^{x} + x^{2}e^{x} + \frac{1}{ln{10}(x)})}{x^{3}ln^{3}{10}}\\=&12e^{x}sec^{2}(x^{2}e^{x} + lg(x)) + 192xe^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 264x^{2}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + \frac{16e^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{xln{10}} + 24e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 96x^{2}e^{{x}*{3}}sec^{4}(x^{2}e^{x} + lg(x)) + 288x^{3}e^{{x}*{3}}sec^{4}(x^{2}e^{x} + lg(x)) + \frac{48e^{{x}*{2}}sec^{4}(x^{2}e^{x} + lg(x))}{ln{10}} + 192x^{2}e^{{x}*{3}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 576x^{3}e^{{x}*{3}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + \frac{96e^{{x}*{2}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + 264x^{4}e^{{x}*{3}}sec^{4}(x^{2}e^{x} + lg(x)) + \frac{192xe^{{x}*{2}}sec^{4}(x^{2}e^{x} + lg(x))}{ln{10}} + 528x^{4}e^{{x}*{3}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + \frac{384xe^{{x}*{2}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + 8xe^{x}sec^{2}(x^{2}e^{x} + lg(x)) + 256x^{4}e^{{x}*{4}}tan(x^{2}e^{x} + lg(x))sec^{4}(x^{2}e^{x} + lg(x)) + 512x^{5}e^{{x}*{4}}tan(x^{2}e^{x} + lg(x))sec^{4}(x^{2}e^{x} + lg(x)) + \frac{512x^{2}e^{{x}*{3}}tan(x^{2}e^{x} + lg(x))sec^{4}(x^{2}e^{x} + lg(x))}{ln{10}} + 112x^{3}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 96x^{5}e^{{x}*{3}}sec^{4}(x^{2}e^{x} + lg(x)) + \frac{132x^{2}e^{{x}*{2}}sec^{4}(x^{2}e^{x} + lg(x))}{ln{10}} + 192x^{5}e^{{x}*{3}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + \frac{264x^{2}e^{{x}*{2}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{36e^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{24e^{x}sec^{4}(x^{2}e^{x} + lg(x))}{xln^{2}{10}} + \frac{48e^{x}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{xln^{2}{10}} + 384x^{6}e^{{x}*{4}}tan(x^{2}e^{x} + lg(x))sec^{4}(x^{2}e^{x} + lg(x)) + \frac{768x^{3}e^{{x}*{3}}tan(x^{2}e^{x} + lg(x))sec^{4}(x^{2}e^{x} + lg(x))}{ln{10}} + 128x^{7}e^{{x}*{4}}tan(x^{2}e^{x} + lg(x))sec^{4}(x^{2}e^{x} + lg(x)) + \frac{384x^{4}e^{{x}*{3}}tan(x^{2}e^{x} + lg(x))sec^{4}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{384e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{4}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} + 16x^{8}e^{{x}*{4}}tan(x^{2}e^{x} + lg(x))sec^{4}(x^{2}e^{x} + lg(x)) + \frac{64x^{5}e^{{x}*{3}}tan(x^{2}e^{x} + lg(x))sec^{4}(x^{2}e^{x} + lg(x))}{ln{10}} + 128x^{4}e^{{x}*{4}}tan^{3}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + 256x^{5}e^{{x}*{4}}tan^{3}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + \frac{256x^{2}e^{{x}*{3}}tan^{3}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + 192x^{6}e^{{x}*{4}}tan^{3}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + \frac{384x^{3}e^{{x}*{3}}tan^{3}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{384xe^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{4}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} + \frac{192e^{{x}*{2}}tan^{3}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} + \frac{128e^{x}tan(x^{2}e^{x} + lg(x))sec^{4}(x^{2}e^{x} + lg(x))}{x^{2}ln^{3}{10}} + 64x^{7}e^{{x}*{4}}tan^{3}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + \frac{192x^{4}e^{{x}*{3}}tan^{3}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{96x^{2}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{4}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} + \frac{192xe^{{x}*{2}}tan^{3}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} - \frac{24e^{x}sec^{4}(x^{2}e^{x} + lg(x))}{x^{2}ln^{2}{10}} - \frac{48e^{x}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{x^{2}ln^{2}{10}} + \frac{64e^{x}tan^{3}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{x^{2}ln^{3}{10}} + x^{2}e^{x}sec^{2}(x^{2}e^{x} + lg(x)) + 14x^{4}e^{{x}*{2}}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + \frac{8xe^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + 12x^{6}e^{{x}*{3}}sec^{4}(x^{2}e^{x} + lg(x)) + \frac{24x^{3}e^{{x}*{2}}sec^{4}(x^{2}e^{x} + lg(x))}{ln{10}} + 24x^{6}e^{{x}*{3}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + \frac{48x^{3}e^{{x}*{2}}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{12e^{x}sec^{4}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} + \frac{24e^{x}tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} + 8x^{8}e^{{x}*{4}}tan^{3}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x)) + \frac{32x^{5}e^{{x}*{3}}tan^{3}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln{10}} + \frac{48x^{2}e^{{x}*{2}}tan^{3}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{ln^{2}{10}} + \frac{64e^{x}tan(x^{2}e^{x} + lg(x))sec^{4}(x^{2}e^{x} + lg(x))}{xln^{3}{10}} + \frac{32e^{x}tan^{3}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{xln^{3}{10}} - \frac{6sec^{2}(x^{2}e^{x} + lg(x))}{x^{4}ln{10}} + \frac{16tan(x^{2}e^{x} + lg(x))sec^{4}(x^{2}e^{x} + lg(x))}{x^{4}ln^{4}{10}} + \frac{22tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{x^{4}ln^{2}{10}} - \frac{12sec^{4}(x^{2}e^{x} + lg(x))}{x^{4}ln^{3}{10}} - \frac{24tan^{2}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{x^{4}ln^{3}{10}} + \frac{8e^{x}tan(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{x^{2}ln{10}} + \frac{8tan^{3}(x^{2}e^{x} + lg(x))sec^{2}(x^{2}e^{x} + lg(x))}{x^{4}ln^{4}{10}}\\ \end{split}\end{equation} \]



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。