There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (-0.5sqrt(3sqrt({x}^{5}) + 7{x}^{2} - 14)){\frac{1}{x}}^{2} + \frac{((1.875{x}^{5.5}) + 3.5)}{sqrt(3sqrt(x*5) + 7x*2 - 14)} - {x}^{-0.5}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-0.5sqrt(3sqrt(x^{5}) + 7x^{2} - 14)}{x^{2}} + \frac{1.875x^{\frac{11}{2}}}{sqrt(3sqrt(5x) + 14x - 14)} + \frac{3.5}{sqrt(3sqrt(5x) + 14x - 14)} - \frac{1}{x^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-0.5sqrt(3sqrt(x^{5}) + 7x^{2} - 14)}{x^{2}} + \frac{1.875x^{\frac{11}{2}}}{sqrt(3sqrt(5x) + 14x - 14)} + \frac{3.5}{sqrt(3sqrt(5x) + 14x - 14)} - \frac{1}{x^{\frac{1}{2}}}\right)}{dx}\\=&\frac{-0.5*-2sqrt(3sqrt(x^{5}) + 7x^{2} - 14)}{x^{3}} - \frac{0.5(3*5x^{4}*0.5x^{\frac{5}{2}} + 7*2x + 0)*0.5}{x^{2}(3sqrt(x^{5}) + 7x^{2} - 14)^{\frac{1}{2}}} + \frac{1.875*5.5x^{\frac{9}{2}}}{sqrt(3sqrt(5x) + 14x - 14)} + \frac{1.875x^{\frac{11}{2}}*-(\frac{3*5*0.5}{(5x)^{\frac{1}{2}}} + 14 + 0)*0.5}{(3sqrt(5x) + 14x - 14)(3sqrt(5x) + 14x - 14)^{\frac{1}{2}}} + \frac{3.5*-(\frac{3*5*0.5}{(5x)^{\frac{1}{2}}} + 14 + 0)*0.5}{(3sqrt(5x) + 14x - 14)(3sqrt(5x) + 14x - 14)^{\frac{1}{2}}} + \frac{0.5}{x^{\frac{3}{2}}}\\=&\frac{sqrt(3sqrt(x^{5}) + 7x^{2} - 14)}{x^{3}} - \frac{1.875x^{\frac{9}{2}}}{(3sqrt(x^{5}) + 7x^{2} - 14)^{\frac{1}{2}}} - \frac{3.5}{(3sqrt(x^{5}) + 7x^{2} - 14)^{\frac{1}{2}}x} + \frac{10.3125x^{\frac{9}{2}}}{sqrt(3sqrt(5x) + 14x - 14)} - \frac{3.14447059335908x^{5}}{(3sqrt(5x) + 14x - 14)(3sqrt(5x) + 14x - 14)^{\frac{1}{2}}} - \frac{13.125x^{\frac{11}{2}}}{(3sqrt(5x) + 14x - 14)(3sqrt(5x) + 14x - 14)^{\frac{1}{2}}} - \frac{5.86967844093695}{(3sqrt(5x) + 14x - 14)(3sqrt(5x) + 14x - 14)^{\frac{1}{2}}x^{\frac{1}{2}}} - \frac{24.5}{(3sqrt(5x) + 14x - 14)(3sqrt(5x) + 14x - 14)^{\frac{1}{2}}} + \frac{0.5}{x^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!