There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{A(e^{C(D + x) + F} - Ce^{-(C(D + x) + F)})}{(e^{C(D + x) + F} + e^{-(C(D + x) + F)})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{Ae^{CD + Cx + F}}{(e^{CD + Cx + F} + e^{-CD - Cx - F})} - \frac{ACe^{-CD - Cx - F}}{(e^{CD + Cx + F} + e^{-CD - Cx - F})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{Ae^{CD + Cx + F}}{(e^{CD + Cx + F} + e^{-CD - Cx - F})} - \frac{ACe^{-CD - Cx - F}}{(e^{CD + Cx + F} + e^{-CD - Cx - F})}\right)}{dx}\\=&(\frac{-(e^{CD + Cx + F}(0 + C + 0) + e^{-CD - Cx - F}(0 - C + 0))}{(e^{CD + Cx + F} + e^{-CD - Cx - F})^{2}})Ae^{CD + Cx + F} + \frac{Ae^{CD + Cx + F}(0 + C + 0)}{(e^{CD + Cx + F} + e^{-CD - Cx - F})} - (\frac{-(e^{CD + Cx + F}(0 + C + 0) + e^{-CD - Cx - F}(0 - C + 0))}{(e^{CD + Cx + F} + e^{-CD - Cx - F})^{2}})ACe^{-CD - Cx - F} - \frac{ACe^{-CD - Cx - F}(0 - C + 0)}{(e^{CD + Cx + F} + e^{-CD - Cx - F})}\\=&\frac{ACe^{-CD - Cx - F}e^{CD + Cx + F}}{(e^{CD + Cx + F} + e^{-CD - Cx - F})^{2}} + \frac{AC^{2}e^{CD + Cx + F}e^{-CD - Cx - F}}{(e^{CD + Cx + F} + e^{-CD - Cx - F})^{2}} + \frac{ACe^{CD + Cx + F}}{(e^{CD + Cx + F} + e^{-CD - Cx - F})} - \frac{ACe^{{\left(CD + Cx + F\right)}*{2}}}{(e^{CD + Cx + F} + e^{-CD - Cx - F})^{2}} - \frac{AC^{2}e^{{\left(-CD - Cx - F\right)}*{2}}}{(e^{CD + Cx + F} + e^{-CD - Cx - F})^{2}} + \frac{AC^{2}e^{-CD - Cx - F}}{(e^{CD + Cx + F} + e^{-CD - Cx - F})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!