There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{ln({(1 + {e}^{(2x)})}^{\frac{1}{2}} + ({e}^{x}))}{2} + (\frac{1}{2})({e}^{x})({(1 + ({e}^{(2x)}))}^{\frac{1}{2}})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}ln(({e}^{(2x)} + 1)^{\frac{1}{2}} + {e}^{x}) + \frac{1}{2}({e}^{(2x)} + 1)^{\frac{1}{2}}{e}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}ln(({e}^{(2x)} + 1)^{\frac{1}{2}} + {e}^{x}) + \frac{1}{2}({e}^{(2x)} + 1)^{\frac{1}{2}}{e}^{x}\right)}{dx}\\=&\frac{\frac{1}{2}((\frac{\frac{1}{2}(({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)})) + 0)}{({e}^{(2x)} + 1)^{\frac{1}{2}}}) + ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{(({e}^{(2x)} + 1)^{\frac{1}{2}} + {e}^{x})} + \frac{1}{2}(\frac{\frac{1}{2}(({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)})) + 0)}{({e}^{(2x)} + 1)^{\frac{1}{2}}}){e}^{x} + \frac{1}{2}({e}^{(2x)} + 1)^{\frac{1}{2}}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&\frac{{e}^{(2x)}}{2(({e}^{(2x)} + 1)^{\frac{1}{2}} + {e}^{x})({e}^{(2x)} + 1)^{\frac{1}{2}}} + \frac{{e}^{x}}{2(({e}^{(2x)} + 1)^{\frac{1}{2}} + {e}^{x})} + \frac{{e}^{(3x)}}{2({e}^{(2x)} + 1)^{\frac{1}{2}}} + \frac{({e}^{(2x)} + 1)^{\frac{1}{2}}{e}^{x}}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!