There are 2 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ first\ derivative\ of\ function\ \frac{10{e}^{(\frac{x}{2})}(6sin(\frac{3x}{5}) + 5cos(\frac{3x}{5}))}{61} + C\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{60}{61}{e}^{(\frac{1}{2}x)}sin(\frac{3}{5}x) + \frac{50}{61}{e}^{(\frac{1}{2}x)}cos(\frac{3}{5}x) + C\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{60}{61}{e}^{(\frac{1}{2}x)}sin(\frac{3}{5}x) + \frac{50}{61}{e}^{(\frac{1}{2}x)}cos(\frac{3}{5}x) + C\right)}{dx}\\=&\frac{60}{61}({e}^{(\frac{1}{2}x)}((\frac{1}{2})ln(e) + \frac{(\frac{1}{2}x)(0)}{(e)}))sin(\frac{3}{5}x) + \frac{60}{61}{e}^{(\frac{1}{2}x)}cos(\frac{3}{5}x)*\frac{3}{5} + \frac{50}{61}({e}^{(\frac{1}{2}x)}((\frac{1}{2})ln(e) + \frac{(\frac{1}{2}x)(0)}{(e)}))cos(\frac{3}{5}x) + \frac{50}{61}{e}^{(\frac{1}{2}x)}*-sin(\frac{3}{5}x)*\frac{3}{5} + 0\\=&{e}^{(\frac{1}{2}x)}cos(\frac{3}{5}x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ first\ derivative\ of\ function\ \frac{10{e}^{(\frac{x}{2})}(5sin(\frac{3x}{5}) - 6cos(\frac{3x}{5}))}{61} + C\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{50}{61}{e}^{(\frac{1}{2}x)}sin(\frac{3}{5}x) - \frac{60}{61}{e}^{(\frac{1}{2}x)}cos(\frac{3}{5}x) + C\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{50}{61}{e}^{(\frac{1}{2}x)}sin(\frac{3}{5}x) - \frac{60}{61}{e}^{(\frac{1}{2}x)}cos(\frac{3}{5}x) + C\right)}{dx}\\=&\frac{50}{61}({e}^{(\frac{1}{2}x)}((\frac{1}{2})ln(e) + \frac{(\frac{1}{2}x)(0)}{(e)}))sin(\frac{3}{5}x) + \frac{50}{61}{e}^{(\frac{1}{2}x)}cos(\frac{3}{5}x)*\frac{3}{5} - \frac{60}{61}({e}^{(\frac{1}{2}x)}((\frac{1}{2})ln(e) + \frac{(\frac{1}{2}x)(0)}{(e)}))cos(\frac{3}{5}x) - \frac{60}{61}{e}^{(\frac{1}{2}x)}*-sin(\frac{3}{5}x)*\frac{3}{5} + 0\\=&{e}^{(\frac{1}{2}x)}sin(\frac{3}{5}x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!