There are 6 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/6]Find\ the\ first\ derivative\ of\ function\ -cos(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -cos(x)\right)}{dx}\\=&--sin(x)\\=&sin(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/6]Find\ the\ first\ derivative\ of\ function\ sin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(x)\right)}{dx}\\=&cos(x)\\=&cos(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/6]Find\ the\ first\ derivative\ of\ function\ ln(sec(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(sec(x))\right)}{dx}\\=&\frac{sec(x)tan(x)}{(sec(x))}\\=&tan(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[4/6]Find\ the\ first\ derivative\ of\ function\ -ln(csc(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -ln(csc(x))\right)}{dx}\\=&\frac{--csc(x)cot(x)}{(csc(x))}\\=&cot(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[5/6]Find\ the\ first\ derivative\ of\ function\ ln(sec(x) + tan(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(sec(x) + tan(x))\right)}{dx}\\=&\frac{(sec(x)tan(x) + sec^{2}(x)(1))}{(sec(x) + tan(x))}\\=&\frac{tan(x)sec(x)}{(sec(x) + tan(x))} + \frac{sec^{2}(x)}{(sec(x) + tan(x))}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[6/6]Find\ the\ first\ derivative\ of\ function\ ln(csc(x) - cot(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(csc(x) - cot(x))\right)}{dx}\\=&\frac{(-csc(x)cot(x) - -csc^{2}(x))}{(csc(x) - cot(x))}\\=&\frac{-cot(x)csc(x)}{(csc(x) - cot(x))} + \frac{csc^{2}(x)}{(csc(x) - cot(x))}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!