There are 2 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ first\ derivative\ of\ function\ arctan(t)\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arctan(t)\right)}{dt}\\=&(\frac{(1)}{(1 + (t)^{2})})\\=&\frac{1}{(t^{2} + 1)}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ first\ derivative\ of\ function\ arctan(\frac{(1 + t)}{(1 - t)})\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arctan(\frac{t}{(-t + 1)} + \frac{1}{(-t + 1)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arctan(\frac{t}{(-t + 1)} + \frac{1}{(-t + 1)})\right)}{dt}\\=&(\frac{((\frac{-(-1 + 0)}{(-t + 1)^{2}})t + \frac{1}{(-t + 1)} + (\frac{-(-1 + 0)}{(-t + 1)^{2}}))}{(1 + (\frac{t}{(-t + 1)} + \frac{1}{(-t + 1)})^{2})})\\=&\frac{t}{(-t + 1)^{2}(\frac{t^{2}}{(-t + 1)^{2}} + \frac{2t}{(-t + 1)^{2}} + \frac{1}{(-t + 1)^{2}} + 1)} + \frac{1}{(-t + 1)^{2}(\frac{t^{2}}{(-t + 1)^{2}} + \frac{2t}{(-t + 1)^{2}} + \frac{1}{(-t + 1)^{2}} + 1)} + \frac{1}{(-t + 1)(\frac{t^{2}}{(-t + 1)^{2}} + \frac{2t}{(-t + 1)^{2}} + \frac{1}{(-t + 1)^{2}} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!