There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{3}{2}({({x}^{2} + 1)}^{\frac{1}{2}})x - {({x}^{2} + 1)}^{\frac{3}{2}}){\frac{1}{x}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{3}{2}(x^{2} + 1)^{\frac{1}{2}}}{x} - \frac{(x^{2} + 1)^{\frac{3}{2}}}{x^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{3}{2}(x^{2} + 1)^{\frac{1}{2}}}{x} - \frac{(x^{2} + 1)^{\frac{3}{2}}}{x^{2}}\right)}{dx}\\=&\frac{\frac{3}{2}(\frac{\frac{1}{2}(2x + 0)}{(x^{2} + 1)^{\frac{1}{2}}})}{x} + \frac{\frac{3}{2}(x^{2} + 1)^{\frac{1}{2}}*-1}{x^{2}} - \frac{(\frac{3}{2}(x^{2} + 1)^{\frac{1}{2}}(2x + 0))}{x^{2}} - \frac{(x^{2} + 1)^{\frac{3}{2}}*-2}{x^{3}}\\=&\frac{-3(x^{2} + 1)^{\frac{1}{2}}}{2x^{2}} - \frac{3(x^{2} + 1)^{\frac{1}{2}}}{x} + \frac{2(x^{2} + 1)^{\frac{3}{2}}}{x^{3}} + \frac{3}{2(x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!