Mathematics
         
语言:中文    Language:English
Derivative function:
    Enter an original function (that is, the function to be derived), then set the variable to be derived and the order of the derivative, and click the "Next" button to obtain the derivative function of the corresponding order of the function.
    Note that the input function supports mathematical functions and other constants.
    Current location:Derivative function > Derivative function calculation history > Answer

    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ log_{sin(x)}^{cos(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{sin(x)}^{cos(x)}\right)}{dx}\\=&(\frac{(\frac{(-sin(x))}{(cos(x))} - \frac{(cos(x))log_{sin(x)}^{cos(x)}}{(sin(x))})}{(ln(sin(x)))})\\=&\frac{-sin(x)}{ln(sin(x))cos(x)} - \frac{log_{sin(x)}^{cos(x)}cos(x)}{ln(sin(x))sin(x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-sin(x)}{ln(sin(x))cos(x)} - \frac{log_{sin(x)}^{cos(x)}cos(x)}{ln(sin(x))sin(x)}\right)}{dx}\\=&\frac{--cos(x)sin(x)}{ln^{2}(sin(x))(sin(x))cos(x)} - \frac{cos(x)}{ln(sin(x))cos(x)} - \frac{sin(x)sin(x)}{ln(sin(x))cos^{2}(x)} - \frac{(\frac{(\frac{(-sin(x))}{(cos(x))} - \frac{(cos(x))log_{sin(x)}^{cos(x)}}{(sin(x))})}{(ln(sin(x)))})cos(x)}{ln(sin(x))sin(x)} - \frac{log_{sin(x)}^{cos(x)}*-cos(x)cos(x)}{ln^{2}(sin(x))(sin(x))sin(x)} - \frac{log_{sin(x)}^{cos(x)}*-cos(x)cos(x)}{ln(sin(x))sin^{2}(x)} - \frac{log_{sin(x)}^{cos(x)}*-sin(x)}{ln(sin(x))sin(x)}\\=& - \frac{sin^{2}(x)}{ln(sin(x))cos^{2}(x)} - \frac{1}{ln(sin(x))} + \frac{2}{ln^{2}(sin(x))} + \frac{2log_{sin(x)}^{cos(x)}cos^{2}(x)}{ln^{2}(sin(x))sin^{2}(x)} + \frac{log_{sin(x)}^{cos(x)}cos^{2}(x)}{ln(sin(x))sin^{2}(x)} + \frac{log_{sin(x)}^{cos(x)}}{ln(sin(x))}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( - \frac{sin^{2}(x)}{ln(sin(x))cos^{2}(x)} - \frac{1}{ln(sin(x))} + \frac{2}{ln^{2}(sin(x))} + \frac{2log_{sin(x)}^{cos(x)}cos^{2}(x)}{ln^{2}(sin(x))sin^{2}(x)} + \frac{log_{sin(x)}^{cos(x)}cos^{2}(x)}{ln(sin(x))sin^{2}(x)} + \frac{log_{sin(x)}^{cos(x)}}{ln(sin(x))}\right)}{dx}\\=& - \frac{-cos(x)sin^{2}(x)}{ln^{2}(sin(x))(sin(x))cos^{2}(x)} - \frac{2sin(x)cos(x)}{ln(sin(x))cos^{2}(x)} - \frac{sin^{2}(x)*2sin(x)}{ln(sin(x))cos^{3}(x)} - \frac{-cos(x)}{ln^{2}(sin(x))(sin(x))} + \frac{2*-2cos(x)}{ln^{3}(sin(x))(sin(x))} + \frac{2(\frac{(\frac{(-sin(x))}{(cos(x))} - \frac{(cos(x))log_{sin(x)}^{cos(x)}}{(sin(x))})}{(ln(sin(x)))})cos^{2}(x)}{ln^{2}(sin(x))sin^{2}(x)} + \frac{2log_{sin(x)}^{cos(x)}*-2cos(x)cos^{2}(x)}{ln^{3}(sin(x))(sin(x))sin^{2}(x)} + \frac{2log_{sin(x)}^{cos(x)}*-2cos(x)cos^{2}(x)}{ln^{2}(sin(x))sin^{3}(x)} + \frac{2log_{sin(x)}^{cos(x)}*-2cos(x)sin(x)}{ln^{2}(sin(x))sin^{2}(x)} + \frac{(\frac{(\frac{(-sin(x))}{(cos(x))} - \frac{(cos(x))log_{sin(x)}^{cos(x)}}{(sin(x))})}{(ln(sin(x)))})cos^{2}(x)}{ln(sin(x))sin^{2}(x)} + \frac{log_{sin(x)}^{cos(x)}*-cos(x)cos^{2}(x)}{ln^{2}(sin(x))(sin(x))sin^{2}(x)} + \frac{log_{sin(x)}^{cos(x)}*-2cos(x)cos^{2}(x)}{ln(sin(x))sin^{3}(x)} + \frac{log_{sin(x)}^{cos(x)}*-2cos(x)sin(x)}{ln(sin(x))sin^{2}(x)} + \frac{(\frac{(\frac{(-sin(x))}{(cos(x))} - \frac{(cos(x))log_{sin(x)}^{cos(x)}}{(sin(x))})}{(ln(sin(x)))})}{ln(sin(x))} + \frac{log_{sin(x)}^{cos(x)}*-cos(x)}{ln^{2}(sin(x))(sin(x))}\\=& - \frac{2sin(x)}{ln(sin(x))cos(x)} - \frac{2sin^{3}(x)}{ln(sin(x))cos^{3}(x)} - \frac{6cos(x)}{ln^{3}(sin(x))sin(x)} - \frac{6log_{sin(x)}^{cos(x)}cos^{3}(x)}{ln^{3}(sin(x))sin^{3}(x)} - \frac{6log_{sin(x)}^{cos(x)}cos^{3}(x)}{ln^{2}(sin(x))sin^{3}(x)} - \frac{6log_{sin(x)}^{cos(x)}cos(x)}{ln^{2}(sin(x))sin(x)} - \frac{2log_{sin(x)}^{cos(x)}cos^{3}(x)}{ln(sin(x))sin^{3}(x)} - \frac{2log_{sin(x)}^{cos(x)}cos(x)}{ln(sin(x))sin(x)}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( - \frac{2sin(x)}{ln(sin(x))cos(x)} - \frac{2sin^{3}(x)}{ln(sin(x))cos^{3}(x)} - \frac{6cos(x)}{ln^{3}(sin(x))sin(x)} - \frac{6log_{sin(x)}^{cos(x)}cos^{3}(x)}{ln^{3}(sin(x))sin^{3}(x)} - \frac{6log_{sin(x)}^{cos(x)}cos^{3}(x)}{ln^{2}(sin(x))sin^{3}(x)} - \frac{6log_{sin(x)}^{cos(x)}cos(x)}{ln^{2}(sin(x))sin(x)} - \frac{2log_{sin(x)}^{cos(x)}cos^{3}(x)}{ln(sin(x))sin^{3}(x)} - \frac{2log_{sin(x)}^{cos(x)}cos(x)}{ln(sin(x))sin(x)}\right)}{dx}\\=& - \frac{2*-cos(x)sin(x)}{ln^{2}(sin(x))(sin(x))cos(x)} - \frac{2cos(x)}{ln(sin(x))cos(x)} - \frac{2sin(x)sin(x)}{ln(sin(x))cos^{2}(x)} - \frac{2*-cos(x)sin^{3}(x)}{ln^{2}(sin(x))(sin(x))cos^{3}(x)} - \frac{2*3sin^{2}(x)cos(x)}{ln(sin(x))cos^{3}(x)} - \frac{2sin^{3}(x)*3sin(x)}{ln(sin(x))cos^{4}(x)} - \frac{6*-3cos(x)cos(x)}{ln^{4}(sin(x))(sin(x))sin(x)} - \frac{6*-cos(x)cos(x)}{ln^{3}(sin(x))sin^{2}(x)} - \frac{6*-sin(x)}{ln^{3}(sin(x))sin(x)} - \frac{6(\frac{(\frac{(-sin(x))}{(cos(x))} - \frac{(cos(x))log_{sin(x)}^{cos(x)}}{(sin(x))})}{(ln(sin(x)))})cos^{3}(x)}{ln^{3}(sin(x))sin^{3}(x)} - \frac{6log_{sin(x)}^{cos(x)}*-3cos(x)cos^{3}(x)}{ln^{4}(sin(x))(sin(x))sin^{3}(x)} - \frac{6log_{sin(x)}^{cos(x)}*-3cos(x)cos^{3}(x)}{ln^{3}(sin(x))sin^{4}(x)} - \frac{6log_{sin(x)}^{cos(x)}*-3cos^{2}(x)sin(x)}{ln^{3}(sin(x))sin^{3}(x)} - \frac{6(\frac{(\frac{(-sin(x))}{(cos(x))} - \frac{(cos(x))log_{sin(x)}^{cos(x)}}{(sin(x))})}{(ln(sin(x)))})cos^{3}(x)}{ln^{2}(sin(x))sin^{3}(x)} - \frac{6log_{sin(x)}^{cos(x)}*-2cos(x)cos^{3}(x)}{ln^{3}(sin(x))(sin(x))sin^{3}(x)} - \frac{6log_{sin(x)}^{cos(x)}*-3cos(x)cos^{3}(x)}{ln^{2}(sin(x))sin^{4}(x)} - \frac{6log_{sin(x)}^{cos(x)}*-3cos^{2}(x)sin(x)}{ln^{2}(sin(x))sin^{3}(x)} - \frac{6(\frac{(\frac{(-sin(x))}{(cos(x))} - \frac{(cos(x))log_{sin(x)}^{cos(x)}}{(sin(x))})}{(ln(sin(x)))})cos(x)}{ln^{2}(sin(x))sin(x)} - \frac{6log_{sin(x)}^{cos(x)}*-2cos(x)cos(x)}{ln^{3}(sin(x))(sin(x))sin(x)} - \frac{6log_{sin(x)}^{cos(x)}*-cos(x)cos(x)}{ln^{2}(sin(x))sin^{2}(x)} - \frac{6log_{sin(x)}^{cos(x)}*-sin(x)}{ln^{2}(sin(x))sin(x)} - \frac{2(\frac{(\frac{(-sin(x))}{(cos(x))} - \frac{(cos(x))log_{sin(x)}^{cos(x)}}{(sin(x))})}{(ln(sin(x)))})cos^{3}(x)}{ln(sin(x))sin^{3}(x)} - \frac{2log_{sin(x)}^{cos(x)}*-cos(x)cos^{3}(x)}{ln^{2}(sin(x))(sin(x))sin^{3}(x)} - \frac{2log_{sin(x)}^{cos(x)}*-3cos(x)cos^{3}(x)}{ln(sin(x))sin^{4}(x)} - \frac{2log_{sin(x)}^{cos(x)}*-3cos^{2}(x)sin(x)}{ln(sin(x))sin^{3}(x)} - \frac{2(\frac{(\frac{(-sin(x))}{(cos(x))} - \frac{(cos(x))log_{sin(x)}^{cos(x)}}{(sin(x))})}{(ln(sin(x)))})cos(x)}{ln(sin(x))sin(x)} - \frac{2log_{sin(x)}^{cos(x)}*-cos(x)cos(x)}{ln^{2}(sin(x))(sin(x))sin(x)} - \frac{2log_{sin(x)}^{cos(x)}*-cos(x)cos(x)}{ln(sin(x))sin^{2}(x)} - \frac{2log_{sin(x)}^{cos(x)}*-sin(x)}{ln(sin(x))sin(x)}\\=& - \frac{8sin^{2}(x)}{ln(sin(x))cos^{2}(x)} + \frac{2sin^{2}(x)}{ln^{2}(sin(x))cos^{2}(x)} - \frac{6sin^{4}(x)}{ln(sin(x))cos^{4}(x)} + \frac{24cos^{2}(x)}{ln^{4}(sin(x))sin^{2}(x)} + \frac{12cos^{2}(x)}{ln^{3}(sin(x))sin^{2}(x)} + \frac{2cos^{2}(x)}{ln^{2}(sin(x))sin^{2}(x)} + \frac{4}{ln^{2}(sin(x))} + \frac{12}{ln^{3}(sin(x))} + \frac{24log_{sin(x)}^{cos(x)}cos^{4}(x)}{ln^{4}(sin(x))sin^{4}(x)} + \frac{36log_{sin(x)}^{cos(x)}cos^{4}(x)}{ln^{3}(sin(x))sin^{4}(x)} + \frac{36log_{sin(x)}^{cos(x)}cos^{2}(x)}{ln^{3}(sin(x))sin^{2}(x)} + \frac{22log_{sin(x)}^{cos(x)}cos^{4}(x)}{ln^{2}(sin(x))sin^{4}(x)} + \frac{28log_{sin(x)}^{cos(x)}cos^{2}(x)}{ln^{2}(sin(x))sin^{2}(x)} + \frac{8log_{sin(x)}^{cos(x)}cos^{2}(x)}{ln(sin(x))sin^{2}(x)} - \frac{2}{ln(sin(x))} + \frac{6log_{sin(x)}^{cos(x)}cos^{4}(x)}{ln(sin(x))sin^{4}(x)} + \frac{6log_{sin(x)}^{cos(x)}}{ln^{2}(sin(x))} + \frac{2log_{sin(x)}^{cos(x)}}{ln(sin(x))}\\ \end{split}\end{equation} \]



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。