There are 3 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/3]Find\ the\ 4th\ derivative\ of\ function\ 502BadGate^{w}ay\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 502Ba^{3}dGtye^{w}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 502Ba^{3}dGtye^{w}\right)}{dx}\\=&502Ba^{3}dGtye^{w}*0\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/3]Find\ the\ 4th\ derivative\ of\ function\ 503Se^{r}vice^{T}e^{m}porarilyUnavailable\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 503Sr^{2}v^{2}i^{3}cpoa^{4}l^{3}yUnbe^{r}e^{T}e^{m}e\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 503Sr^{2}v^{2}i^{3}cpoa^{4}l^{3}yUnbe^{r}e^{T}e^{m}e\right)}{dx}\\=&503Sr^{2}v^{2}i^{3}cpoa^{4}l^{3}yUnbe^{r}*0e^{T}e^{m}e + 503Sr^{2}v^{2}i^{3}cpoa^{4}l^{3}yUnbe^{r}e^{T}*0e^{m}e + 503Sr^{2}v^{2}i^{3}cpoa^{4}l^{3}yUnbe^{r}e^{T}e^{m}*0e + 503Sr^{2}v^{2}i^{3}cpoa^{4}l^{3}yUnbe^{r}e^{T}e^{m}*0\\=&0\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/3]Find\ the\ 4th\ derivative\ of\ function\ 504Gate^{w}ayTime^{o}ut\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 504Ga^{2}t^{2}yTimue^{w}e^{o}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 504Ga^{2}t^{2}yTimue^{w}e^{o}\right)}{dx}\\=&504Ga^{2}t^{2}yTimue^{w}*0e^{o} + 504Ga^{2}t^{2}yTimue^{w}e^{o}*0\\=&0\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!