There are 1 questions in this calculation: for each question, the 1 derivative of a is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(a) + \frac{ln(\frac{(sqrt(2sqrt(3) + 1 - {c}^{2}) - a)}{(sqrt(2sqrt(3) + 1 - {c}^{2}))})}{(2sqrt(2sqrt(3) + 1 - {c}^{2}))} + a{\frac{1}{c}}^{3}\ with\ respect\ to\ a:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{1}{2}ln(\frac{-a}{sqrt(2sqrt(3) - c^{2} + 1)} + 1)}{sqrt(2sqrt(3) - c^{2} + 1)} + ln(a) + \frac{a}{c^{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{1}{2}ln(\frac{-a}{sqrt(2sqrt(3) - c^{2} + 1)} + 1)}{sqrt(2sqrt(3) - c^{2} + 1)} + ln(a) + \frac{a}{c^{3}}\right)}{da}\\=&\frac{\frac{1}{2}(\frac{-1}{sqrt(2sqrt(3) - c^{2} + 1)} - \frac{a*-(2*0*\frac{1}{2}*3^{\frac{1}{2}} + 0 + 0)*\frac{1}{2}}{(2sqrt(3) - c^{2} + 1)(2sqrt(3) - c^{2} + 1)^{\frac{1}{2}}} + 0)}{(\frac{-a}{sqrt(2sqrt(3) - c^{2} + 1)} + 1)sqrt(2sqrt(3) - c^{2} + 1)} + \frac{\frac{1}{2}ln(\frac{-a}{sqrt(2sqrt(3) - c^{2} + 1)} + 1)*-(2*0*\frac{1}{2}*3^{\frac{1}{2}} + 0 + 0)*\frac{1}{2}}{(2sqrt(3) - c^{2} + 1)(2sqrt(3) - c^{2} + 1)^{\frac{1}{2}}} + \frac{1}{(a)} + \frac{1}{c^{3}}\\=&\frac{-1}{2(\frac{-a}{sqrt(2sqrt(3) - c^{2} + 1)} + 1)sqrt(2sqrt(3) - c^{2} + 1)^{2}} + \frac{1}{a} + \frac{1}{c^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!