There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{xsqrt({x}^{2} + 1)}{2} + \frac{ln(x + sqrt({x}^{2} + 1))}{2} - \frac{(3 - x)sqrt({(3 - x)}^{2} + 4)}{2} - 2ln(\frac{(3 - x)}{2} + \frac{sqrt({(3 - x)}^{2} + 4)}{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}xsqrt(x^{2} + 1) + \frac{1}{2}ln(x + sqrt(x^{2} + 1)) - \frac{3}{2}sqrt(x^{2} - 6x + 13) + \frac{1}{2}xsqrt(x^{2} - 6x + 13) - 2ln(\frac{1}{2}sqrt(x^{2} - 6x + 13) - \frac{1}{2}x + \frac{3}{2})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}xsqrt(x^{2} + 1) + \frac{1}{2}ln(x + sqrt(x^{2} + 1)) - \frac{3}{2}sqrt(x^{2} - 6x + 13) + \frac{1}{2}xsqrt(x^{2} - 6x + 13) - 2ln(\frac{1}{2}sqrt(x^{2} - 6x + 13) - \frac{1}{2}x + \frac{3}{2})\right)}{dx}\\=&\frac{1}{2}sqrt(x^{2} + 1) + \frac{\frac{1}{2}x(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}} + \frac{\frac{1}{2}(1 + \frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}})}{(x + sqrt(x^{2} + 1))} - \frac{\frac{3}{2}(2x - 6 + 0)*\frac{1}{2}}{(x^{2} - 6x + 13)^{\frac{1}{2}}} + \frac{1}{2}sqrt(x^{2} - 6x + 13) + \frac{\frac{1}{2}x(2x - 6 + 0)*\frac{1}{2}}{(x^{2} - 6x + 13)^{\frac{1}{2}}} - \frac{2(\frac{\frac{1}{2}(2x - 6 + 0)*\frac{1}{2}}{(x^{2} - 6x + 13)^{\frac{1}{2}}} - \frac{1}{2} + 0)}{(\frac{1}{2}sqrt(x^{2} - 6x + 13) - \frac{1}{2}x + \frac{3}{2})}\\=&\frac{sqrt(x^{2} + 1)}{2} + \frac{x^{2}}{2(x^{2} + 1)^{\frac{1}{2}}} + \frac{x}{2(x + sqrt(x^{2} + 1))(x^{2} + 1)^{\frac{1}{2}}} + \frac{x^{2}}{2(x^{2} - 6x + 13)^{\frac{1}{2}}} - \frac{3x}{(x^{2} - 6x + 13)^{\frac{1}{2}}} - \frac{x}{(\frac{1}{2}sqrt(x^{2} - 6x + 13) - \frac{1}{2}x + \frac{3}{2})(x^{2} - 6x + 13)^{\frac{1}{2}}} + \frac{sqrt(x^{2} - 6x + 13)}{2} + \frac{3}{(\frac{1}{2}sqrt(x^{2} - 6x + 13) - \frac{1}{2}x + \frac{3}{2})(x^{2} - 6x + 13)^{\frac{1}{2}}} + \frac{1}{2(x + sqrt(x^{2} + 1))} + \frac{9}{2(x^{2} - 6x + 13)^{\frac{1}{2}}} + \frac{1}{(\frac{1}{2}sqrt(x^{2} - 6x + 13) - \frac{1}{2}x + \frac{3}{2})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!