There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 18{x}^{6} + \frac{324{x}^{5}}{5} + \frac{171{x}^{4}}{4} - \frac{212{x}^{3}}{3} - 56{x}^{2} + 64x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 18x^{6} + \frac{324}{5}x^{5} + \frac{171}{4}x^{4} - \frac{212}{3}x^{3} - 56x^{2} + 64x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 18x^{6} + \frac{324}{5}x^{5} + \frac{171}{4}x^{4} - \frac{212}{3}x^{3} - 56x^{2} + 64x\right)}{dx}\\=&18*6x^{5} + \frac{324}{5}*5x^{4} + \frac{171}{4}*4x^{3} - \frac{212}{3}*3x^{2} - 56*2x + 64\\=&108x^{5} + 324x^{4} + 171x^{3} - 212x^{2} - 112x + 64\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!