There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{2} - 1)}{({x}^{7} + 2{x}^{5} + {x}^{3})} - (-{\frac{1}{x}}^{3} + \frac{3}{x} - \frac{3}{({x}^{2} + 1)} + \frac{(-5x + 3)}{({x}^{2} + 1)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{(x^{7} + 2x^{5} + x^{3})} + \frac{5x}{(x^{2} + 1)} + \frac{1}{x^{3}} - \frac{3}{x} - \frac{1}{(x^{7} + 2x^{5} + x^{3})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{(x^{7} + 2x^{5} + x^{3})} + \frac{5x}{(x^{2} + 1)} + \frac{1}{x^{3}} - \frac{3}{x} - \frac{1}{(x^{7} + 2x^{5} + x^{3})}\right)}{dx}\\=&(\frac{-(7x^{6} + 2*5x^{4} + 3x^{2})}{(x^{7} + 2x^{5} + x^{3})^{2}})x^{2} + \frac{2x}{(x^{7} + 2x^{5} + x^{3})} + 5(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})x + \frac{5}{(x^{2} + 1)} + \frac{-3}{x^{4}} - \frac{3*-1}{x^{2}} - (\frac{-(7x^{6} + 2*5x^{4} + 3x^{2})}{(x^{7} + 2x^{5} + x^{3})^{2}})\\=&\frac{-7x^{8}}{(x^{7} + 2x^{5} + x^{3})^{2}} - \frac{3x^{6}}{(x^{7} + 2x^{5} + x^{3})^{2}} + \frac{7x^{4}}{(x^{7} + 2x^{5} + x^{3})^{2}} + \frac{2x}{(x^{7} + 2x^{5} + x^{3})} - \frac{10x^{2}}{(x^{2} + 1)^{2}} + \frac{3x^{2}}{(x^{7} + 2x^{5} + x^{3})^{2}} - \frac{3}{x^{4}} + \frac{3}{x^{2}} + \frac{5}{(x^{2} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!