There are 4 questions in this calculation: for each question, the 4 derivative of g is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/4]Find\ the\ 4th\ derivative\ of\ function\ f(x) + (g(x))\ with\ respect\ to\ g:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = fx + xg\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( fx + xg\right)}{dg}\\=&0 + x\\=&x\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( x\right)}{dg}\\=&0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dg}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dg}\\=&0\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/4]Find\ the\ 4th\ derivative\ of\ function\ f(x) - (g(x))\ with\ respect\ to\ g:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = fx - xg\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( fx - xg\right)}{dg}\\=&0 - x\\=& - x\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - x\right)}{dg}\\=& - 0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( - 0\right)}{dg}\\=& - 0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( - 0\right)}{dg}\\=& - 0\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/4]Find\ the\ 4th\ derivative\ of\ function\ f(x)(g(x))\ with\ respect\ to\ g:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = fx^{2}g\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( fx^{2}g\right)}{dg}\\=&fx^{2}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( fx^{2}\right)}{dg}\\=&0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dg}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dg}\\=&0\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[4/4]Find\ the\ 4th\ derivative\ of\ function\ \frac{f(x)}{(g(x))}\ with\ respect\ to\ g:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{f}{g}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{f}{g}\right)}{dg}\\=&\frac{f*-1}{g^{2}}\\=&\frac{-f}{g^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-f}{g^{2}}\right)}{dg}\\=&\frac{-f*-2}{g^{3}}\\=&\frac{2f}{g^{3}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{2f}{g^{3}}\right)}{dg}\\=&\frac{2f*-3}{g^{4}}\\=&\frac{-6f}{g^{4}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-6f}{g^{4}}\right)}{dg}\\=&\frac{-6f*-4}{g^{5}}\\=&\frac{24f}{g^{5}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!