There are 4 questions in this calculation: for each question, the 4 derivative of f is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/4]Find\ the\ 4th\ derivative\ of\ function\ f(x) + (g(x))\ with\ respect\ to\ f:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xf + xg\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xf + xg\right)}{df}\\=&x + 0\\=&x\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( x\right)}{df}\\=&0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{df}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{df}\\=&0\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/4]Find\ the\ 4th\ derivative\ of\ function\ f(x) - (g(x))\ with\ respect\ to\ f:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xf - xg\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xf - xg\right)}{df}\\=&x + 0\\=&x\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( x\right)}{df}\\=&0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{df}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{df}\\=&0\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/4]Find\ the\ 4th\ derivative\ of\ function\ f(x)(g(x))\ with\ respect\ to\ f:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}gf\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}gf\right)}{df}\\=&x^{2}g\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( x^{2}g\right)}{df}\\=&0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{df}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{df}\\=&0\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[4/4]Find\ the\ 4th\ derivative\ of\ function\ \frac{f(x)}{(g(x))}\ with\ respect\ to\ f:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{f}{g}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{f}{g}\right)}{df}\\=&\frac{1}{g}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{g}\right)}{df}\\=&0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{df}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{df}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!