There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 26.53e^{-0.01796x} + (\frac{(59.72*0.1449*0.7565)}{(0.01796 - 0.1449)})(e^{-0.1449x} - e^{-0.01796x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 26.53e^{-0.01796x} - 51.5701771072948e^{-0.1449x} + 51.5701771072948e^{-0.01796x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 26.53e^{-0.01796x} - 51.5701771072948e^{-0.1449x} + 51.5701771072948e^{-0.01796x}\right)}{dx}\\=&26.53e^{-0.01796x}*-0.01796 - 51.5701771072948e^{-0.1449x}*-0.1449 + 51.5701771072948e^{-0.01796x}*-0.01796\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!