There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{e^{3}lg(3)}{log(3, 27)} - sin(30)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{e^{3}lg(3)}{log(3, 27)} - sin(30)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{e^{3}lg(3)}{log(3, 27)} - sin(30)\right)}{dx}\\=&(\frac{-(\frac{(0)}{(27)} - \frac{(0)log_{3}^{27}}{(3)})}{{\left(log(3, 27)^{2}(ln(3))})e^{3}lg(3) + \frac{e^{3}*0lg(3)}{log(3, 27)} + \frac{e^{3}*0}{log(3, 27)ln{10}(3)} - cos(30)*0\\=& - 0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!