There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 2sin(x)(1 - {e}^{(\frac{2(x - 1)}{a})}){y}^{2}(1 - {e}^{(\frac{(y - 1)}{a})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2y^{2}sin(x) - 2y^{2}{e}^{(\frac{y}{a} - \frac{1}{a})}sin(x) - 2y^{2}{e}^{(\frac{2x}{a} - \frac{2}{a})}sin(x) + 2y^{2}{e}^{(\frac{2x}{a} - \frac{2}{a})}{e}^{(\frac{y}{a} - \frac{1}{a})}sin(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2y^{2}sin(x) - 2y^{2}{e}^{(\frac{y}{a} - \frac{1}{a})}sin(x) - 2y^{2}{e}^{(\frac{2x}{a} - \frac{2}{a})}sin(x) + 2y^{2}{e}^{(\frac{2x}{a} - \frac{2}{a})}{e}^{(\frac{y}{a} - \frac{1}{a})}sin(x)\right)}{dx}\\=&2y^{2}cos(x) - 2y^{2}({e}^{(\frac{y}{a} - \frac{1}{a})}((0 + 0)ln(e) + \frac{(\frac{y}{a} - \frac{1}{a})(0)}{(e)}))sin(x) - 2y^{2}{e}^{(\frac{y}{a} - \frac{1}{a})}cos(x) - 2y^{2}({e}^{(\frac{2x}{a} - \frac{2}{a})}((\frac{2}{a} + 0)ln(e) + \frac{(\frac{2x}{a} - \frac{2}{a})(0)}{(e)}))sin(x) - 2y^{2}{e}^{(\frac{2x}{a} - \frac{2}{a})}cos(x) + 2y^{2}({e}^{(\frac{2x}{a} - \frac{2}{a})}((\frac{2}{a} + 0)ln(e) + \frac{(\frac{2x}{a} - \frac{2}{a})(0)}{(e)})){e}^{(\frac{y}{a} - \frac{1}{a})}sin(x) + 2y^{2}{e}^{(\frac{2x}{a} - \frac{2}{a})}({e}^{(\frac{y}{a} - \frac{1}{a})}((0 + 0)ln(e) + \frac{(\frac{y}{a} - \frac{1}{a})(0)}{(e)}))sin(x) + 2y^{2}{e}^{(\frac{2x}{a} - \frac{2}{a})}{e}^{(\frac{y}{a} - \frac{1}{a})}cos(x)\\=&2y^{2}cos(x) - 2y^{2}{e}^{(\frac{y}{a} - \frac{1}{a})}cos(x) - \frac{4y^{2}{e}^{(\frac{2x}{a} - \frac{2}{a})}sin(x)}{a} - 2y^{2}{e}^{(\frac{2x}{a} - \frac{2}{a})}cos(x) + \frac{4y^{2}{e}^{(\frac{2x}{a} - \frac{2}{a})}{e}^{(\frac{y}{a} - \frac{1}{a})}sin(x)}{a} + 2y^{2}{e}^{(\frac{y}{a} - \frac{1}{a})}{e}^{(\frac{2x}{a} - \frac{2}{a})}cos(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2y^{2}cos(x) - 2y^{2}{e}^{(\frac{y}{a} - \frac{1}{a})}cos(x) - \frac{4y^{2}{e}^{(\frac{2x}{a} - \frac{2}{a})}sin(x)}{a} - 2y^{2}{e}^{(\frac{2x}{a} - \frac{2}{a})}cos(x) + \frac{4y^{2}{e}^{(\frac{2x}{a} - \frac{2}{a})}{e}^{(\frac{y}{a} - \frac{1}{a})}sin(x)}{a} + 2y^{2}{e}^{(\frac{y}{a} - \frac{1}{a})}{e}^{(\frac{2x}{a} - \frac{2}{a})}cos(x)\right)}{dx}\\=&2y^{2}*-sin(x) - 2y^{2}({e}^{(\frac{y}{a} - \frac{1}{a})}((0 + 0)ln(e) + \frac{(\frac{y}{a} - \frac{1}{a})(0)}{(e)}))cos(x) - 2y^{2}{e}^{(\frac{y}{a} - \frac{1}{a})}*-sin(x) - \frac{4y^{2}({e}^{(\frac{2x}{a} - \frac{2}{a})}((\frac{2}{a} + 0)ln(e) + \frac{(\frac{2x}{a} - \frac{2}{a})(0)}{(e)}))sin(x)}{a} - \frac{4y^{2}{e}^{(\frac{2x}{a} - \frac{2}{a})}cos(x)}{a} - 2y^{2}({e}^{(\frac{2x}{a} - \frac{2}{a})}((\frac{2}{a} + 0)ln(e) + \frac{(\frac{2x}{a} - \frac{2}{a})(0)}{(e)}))cos(x) - 2y^{2}{e}^{(\frac{2x}{a} - \frac{2}{a})}*-sin(x) + \frac{4y^{2}({e}^{(\frac{2x}{a} - \frac{2}{a})}((\frac{2}{a} + 0)ln(e) + \frac{(\frac{2x}{a} - \frac{2}{a})(0)}{(e)})){e}^{(\frac{y}{a} - \frac{1}{a})}sin(x)}{a} + \frac{4y^{2}{e}^{(\frac{2x}{a} - \frac{2}{a})}({e}^{(\frac{y}{a} - \frac{1}{a})}((0 + 0)ln(e) + \frac{(\frac{y}{a} - \frac{1}{a})(0)}{(e)}))sin(x)}{a} + \frac{4y^{2}{e}^{(\frac{2x}{a} - \frac{2}{a})}{e}^{(\frac{y}{a} - \frac{1}{a})}cos(x)}{a} + 2y^{2}({e}^{(\frac{y}{a} - \frac{1}{a})}((0 + 0)ln(e) + \frac{(\frac{y}{a} - \frac{1}{a})(0)}{(e)})){e}^{(\frac{2x}{a} - \frac{2}{a})}cos(x) + 2y^{2}{e}^{(\frac{y}{a} - \frac{1}{a})}({e}^{(\frac{2x}{a} - \frac{2}{a})}((\frac{2}{a} + 0)ln(e) + \frac{(\frac{2x}{a} - \frac{2}{a})(0)}{(e)}))cos(x) + 2y^{2}{e}^{(\frac{y}{a} - \frac{1}{a})}{e}^{(\frac{2x}{a} - \frac{2}{a})}*-sin(x)\\=&-2y^{2}sin(x) + 2y^{2}{e}^{(\frac{y}{a} - \frac{1}{a})}sin(x) - \frac{8y^{2}{e}^{(\frac{2x}{a} - \frac{2}{a})}sin(x)}{a^{2}} - \frac{8y^{2}{e}^{(\frac{2x}{a} - \frac{2}{a})}cos(x)}{a} + 2y^{2}{e}^{(\frac{2x}{a} - \frac{2}{a})}sin(x) + \frac{8y^{2}{e}^{(\frac{2x}{a} - \frac{2}{a})}{e}^{(\frac{y}{a} - \frac{1}{a})}sin(x)}{a^{2}} + \frac{4y^{2}{e}^{(\frac{y}{a} - \frac{1}{a})}{e}^{(\frac{2x}{a} - \frac{2}{a})}cos(x)}{a} + \frac{4y^{2}{e}^{(\frac{2x}{a} - \frac{2}{a})}{e}^{(\frac{y}{a} - \frac{1}{a})}cos(x)}{a} - 2y^{2}{e}^{(\frac{y}{a} - \frac{1}{a})}{e}^{(\frac{2x}{a} - \frac{2}{a})}sin(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!