There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(xnu)}{(1 + \frac{(1 - rho)hosqrt(\frac{(tau + nu)au}{t})e^{\frac{-{x}^{2}}{(2tau)} - \frac{{(x)}^{2}}{(2(nu + tau))}}}{r})(nu + tau)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{unx}{(\frac{hoe^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}sqrt(a^{2}u^{2} + \frac{au^{2}n}{t})}{r} - h^{2}o^{2}e^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}sqrt(a^{2}u^{2} + \frac{au^{2}n}{t}) + 1)(un + tau)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{unx}{(\frac{hoe^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}sqrt(a^{2}u^{2} + \frac{au^{2}n}{t})}{r} - h^{2}o^{2}e^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}sqrt(a^{2}u^{2} + \frac{au^{2}n}{t}) + 1)(un + tau)}\right)}{dx}\\=&\frac{(\frac{-(\frac{hoe^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}(\frac{\frac{-1}{2}*2x}{tau} - (\frac{-(0 + 0)}{(2un + 2tau)^{2}})x^{2} - \frac{2x}{(2un + 2tau)})sqrt(a^{2}u^{2} + \frac{au^{2}n}{t})}{r} + \frac{hoe^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}(0 + 0)*\frac{1}{2}}{r(a^{2}u^{2} + \frac{au^{2}n}{t})^{\frac{1}{2}}} - h^{2}o^{2}e^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}(\frac{\frac{-1}{2}*2x}{tau} - (\frac{-(0 + 0)}{(2un + 2tau)^{2}})x^{2} - \frac{2x}{(2un + 2tau)})sqrt(a^{2}u^{2} + \frac{au^{2}n}{t}) - \frac{h^{2}o^{2}e^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}(0 + 0)*\frac{1}{2}}{(a^{2}u^{2} + \frac{au^{2}n}{t})^{\frac{1}{2}}} + 0)}{(\frac{hoe^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}sqrt(a^{2}u^{2} + \frac{au^{2}n}{t})}{r} - h^{2}o^{2}e^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}sqrt(a^{2}u^{2} + \frac{au^{2}n}{t}) + 1)^{2}})unx}{(un + tau)} + \frac{(\frac{-(0 + 0)}{(un + tau)^{2}})unx}{(\frac{hoe^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}sqrt(a^{2}u^{2} + \frac{au^{2}n}{t})}{r} - h^{2}o^{2}e^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}sqrt(a^{2}u^{2} + \frac{au^{2}n}{t}) + 1)} + \frac{un}{(\frac{hoe^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}sqrt(a^{2}u^{2} + \frac{au^{2}n}{t})}{r} - h^{2}o^{2}e^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}sqrt(a^{2}u^{2} + \frac{au^{2}n}{t}) + 1)(un + tau)}\\=&\frac{honx^{2}e^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}sqrt(a^{2}u^{2} + \frac{au^{2}n}{t})}{(\frac{hoe^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}sqrt(a^{2}u^{2} + \frac{au^{2}n}{t})}{r} - h^{2}o^{2}e^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}sqrt(a^{2}u^{2} + \frac{au^{2}n}{t}) + 1)^{2}(un + tau)rta} + \frac{2hounx^{2}e^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}sqrt(a^{2}u^{2} + \frac{au^{2}n}{t})}{(\frac{hoe^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}sqrt(a^{2}u^{2} + \frac{au^{2}n}{t})}{r} - h^{2}o^{2}e^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}sqrt(a^{2}u^{2} + \frac{au^{2}n}{t}) + 1)^{2}(2un + 2tau)(un + tau)r} - \frac{h^{2}o^{2}nx^{2}e^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}sqrt(a^{2}u^{2} + \frac{au^{2}n}{t})}{(\frac{hoe^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}sqrt(a^{2}u^{2} + \frac{au^{2}n}{t})}{r} - h^{2}o^{2}e^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}sqrt(a^{2}u^{2} + \frac{au^{2}n}{t}) + 1)^{2}(un + tau)ta} - \frac{2h^{2}o^{2}unx^{2}e^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}sqrt(a^{2}u^{2} + \frac{au^{2}n}{t})}{(\frac{hoe^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}sqrt(a^{2}u^{2} + \frac{au^{2}n}{t})}{r} - h^{2}o^{2}e^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}sqrt(a^{2}u^{2} + \frac{au^{2}n}{t}) + 1)^{2}(2un + 2tau)(un + tau)} + \frac{un}{(\frac{hoe^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}sqrt(a^{2}u^{2} + \frac{au^{2}n}{t})}{r} - h^{2}o^{2}e^{\frac{\frac{-1}{2}x^{2}}{tau} - \frac{x^{2}}{(2un + 2tau)}}sqrt(a^{2}u^{2} + \frac{au^{2}n}{t}) + 1)(un + tau)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!