Mathematics
         
语言:中文    Language:English
Derivative function:
    Enter an original function (that is, the function to be derived), then set the variable to be derived and the order of the derivative, and click the "Next" button to obtain the derivative function of the corresponding order of the function.
    Note that the input function supports mathematical functions and other constants.
    Current location:Derivative function > Derivative function calculation history > Answer

    There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ sqrt(1 - 2xarcsin(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(-2xarcsin(x) + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(-2xarcsin(x) + 1)\right)}{dx}\\=&\frac{(-2arcsin(x) - 2x(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})}) + 0)*\frac{1}{2}}{(-2xarcsin(x) + 1)^{\frac{1}{2}}}\\=&\frac{-arcsin(x)}{(-2xarcsin(x) + 1)^{\frac{1}{2}}} - \frac{x}{(-x^{2} + 1)^{\frac{1}{2}}(-2xarcsin(x) + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-arcsin(x)}{(-2xarcsin(x) + 1)^{\frac{1}{2}}} - \frac{x}{(-x^{2} + 1)^{\frac{1}{2}}(-2xarcsin(x) + 1)^{\frac{1}{2}}}\right)}{dx}\\=&-(\frac{\frac{-1}{2}(-2arcsin(x) - 2x(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})}) + 0)}{(-2xarcsin(x) + 1)^{\frac{3}{2}}})arcsin(x) - \frac{(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-2xarcsin(x) + 1)^{\frac{1}{2}}} - \frac{(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})x}{(-2xarcsin(x) + 1)^{\frac{1}{2}}} - \frac{(\frac{\frac{-1}{2}(-2arcsin(x) - 2x(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})}) + 0)}{(-2xarcsin(x) + 1)^{\frac{3}{2}}})x}{(-x^{2} + 1)^{\frac{1}{2}}} - \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}(-2xarcsin(x) + 1)^{\frac{1}{2}}}\\=&\frac{-arcsin^{2}(x)}{(-2xarcsin(x) + 1)^{\frac{3}{2}}} - \frac{xarcsin(x)}{(-2xarcsin(x) + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{xarcsin(x)}{(-2xarcsin(x) + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{x^{2}}{(-2xarcsin(x) + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{x^{2}}{(-x^{2} + 1)^{\frac{3}{2}}(-2xarcsin(x) + 1)^{\frac{1}{2}}} - \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}(-2xarcsin(x) + 1)^{\frac{1}{2}}} - \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}(-2xarcsin(x) + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-arcsin^{2}(x)}{(-2xarcsin(x) + 1)^{\frac{3}{2}}} - \frac{xarcsin(x)}{(-2xarcsin(x) + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{xarcsin(x)}{(-2xarcsin(x) + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{x^{2}}{(-2xarcsin(x) + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{x^{2}}{(-x^{2} + 1)^{\frac{3}{2}}(-2xarcsin(x) + 1)^{\frac{1}{2}}} - \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}(-2xarcsin(x) + 1)^{\frac{1}{2}}} - \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}(-2xarcsin(x) + 1)^{\frac{1}{2}}}\right)}{dx}\\=&-(\frac{\frac{-3}{2}(-2arcsin(x) - 2x(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})}) + 0)}{(-2xarcsin(x) + 1)^{\frac{5}{2}}})arcsin^{2}(x) - \frac{(\frac{2arcsin(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-2xarcsin(x) + 1)^{\frac{3}{2}}} - \frac{(\frac{\frac{-3}{2}(-2arcsin(x) - 2x(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})}) + 0)}{(-2xarcsin(x) + 1)^{\frac{5}{2}}})xarcsin(x)}{(-x^{2} + 1)^{\frac{1}{2}}} - \frac{(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})xarcsin(x)}{(-2xarcsin(x) + 1)^{\frac{3}{2}}} - \frac{arcsin(x)}{(-2xarcsin(x) + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{x(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-2xarcsin(x) + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{(\frac{\frac{-3}{2}(-2arcsin(x) - 2x(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})}) + 0)}{(-2xarcsin(x) + 1)^{\frac{5}{2}}})xarcsin(x)}{(-x^{2} + 1)^{\frac{1}{2}}} - \frac{(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})xarcsin(x)}{(-2xarcsin(x) + 1)^{\frac{3}{2}}} - \frac{arcsin(x)}{(-2xarcsin(x) + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{x(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-2xarcsin(x) + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{(\frac{\frac{-3}{2}(-2arcsin(x) - 2x(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})}) + 0)}{(-2xarcsin(x) + 1)^{\frac{5}{2}}})x^{2}}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})x^{2}}{(-2xarcsin(x) + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})x^{2}}{(-2xarcsin(x) + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{2x}{(-2xarcsin(x) + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})x^{2}}{(-2xarcsin(x) + 1)^{\frac{1}{2}}} - \frac{(\frac{\frac{-1}{2}(-2arcsin(x) - 2x(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})}) + 0)}{(-2xarcsin(x) + 1)^{\frac{3}{2}}})x^{2}}{(-x^{2} + 1)^{\frac{3}{2}}} - \frac{2x}{(-x^{2} + 1)^{\frac{3}{2}}(-2xarcsin(x) + 1)^{\frac{1}{2}}} - \frac{(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})}{(-2xarcsin(x) + 1)^{\frac{1}{2}}} - \frac{(\frac{\frac{-1}{2}(-2arcsin(x) - 2x(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})}) + 0)}{(-2xarcsin(x) + 1)^{\frac{3}{2}}})}{(-x^{2} + 1)^{\frac{1}{2}}} - \frac{(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})}{(-2xarcsin(x) + 1)^{\frac{1}{2}}} - \frac{(\frac{\frac{-1}{2}(-2arcsin(x) - 2x(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})}) + 0)}{(-2xarcsin(x) + 1)^{\frac{3}{2}}})}{(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{-3arcsin^{3}(x)}{(-2xarcsin(x) + 1)^{\frac{5}{2}}} - \frac{6xarcsin^{2}(x)}{(-2xarcsin(x) + 1)^{\frac{5}{2}}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{2arcsin(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-2xarcsin(x) + 1)^{\frac{3}{2}}} - \frac{3xarcsin^{2}(x)}{(-2xarcsin(x) + 1)^{\frac{5}{2}}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{6x^{2}arcsin(x)}{(-2xarcsin(x) + 1)^{\frac{5}{2}}(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{3x^{2}arcsin(x)}{(-2xarcsin(x) + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{3}{2}}} - \frac{4arcsin(x)}{(-2xarcsin(x) + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{2x}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}(-2xarcsin(x) + 1)^{\frac{3}{2}}} - \frac{3x^{2}arcsin(x)}{(-2xarcsin(x) + 1)^{\frac{5}{2}}(-x^{2} + 1)} - \frac{3x^{3}}{(-2xarcsin(x) + 1)^{\frac{5}{2}}(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)} - \frac{x^{3}}{(-2xarcsin(x) + 1)^{\frac{3}{2}}(-x^{2} + 1)^{2}} - \frac{x^{3}}{(-x^{2} + 1)^{2}(-2xarcsin(x) + 1)^{\frac{3}{2}}} - \frac{2x}{(-x^{2} + 1)(-2xarcsin(x) + 1)^{\frac{3}{2}}} - \frac{3x^{3}}{(-x^{2} + 1)^{\frac{5}{2}}(-2xarcsin(x) + 1)^{\frac{1}{2}}} - \frac{x^{3}}{(-2xarcsin(x) + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{2x}{(-2xarcsin(x) + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} - \frac{2x}{(-x^{2} + 1)^{\frac{3}{2}}(-2xarcsin(x) + 1)^{\frac{1}{2}}} - \frac{2x}{(-2xarcsin(x) + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。