There are 1 questions in this calculation: for each question, the 1 derivative of h is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(o + p + q)({a}^{2} + {b}^{2})}{2} + \frac{r({h}^{2} + {i}^{2} + {j}^{2} - 2hjsin(d))}{2} + \frac{(s + v)({j}^{2} + {h}^{2}{(sin(d))}^{2} + {f}^{2} - 2hjsin(b) - hf + 2jf)}{2} + \frac{t({d}^{2}{(cos(k))}^{2} + {h}^{2}{(cos(d))}^{2}{(sin(k))}^{2} + 2hicos(k)sin(k)cos(d))}{2}\ with\ respect\ to\ h:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}oa^{2} + \frac{1}{2}ob^{2} + \frac{1}{2}pa^{2} + \frac{1}{2}pb^{2} + \frac{1}{2}qa^{2} + \frac{1}{2}qb^{2} + \frac{1}{2}rh^{2} + \frac{1}{2}ri^{2} - rjhsin(d) + \frac{1}{2}rj^{2} - jshsin(b) + \frac{1}{2}sh^{2}sin^{2}(d) - \frac{1}{2}sfh + jsf + \frac{1}{2}sf^{2} + \frac{1}{2}j^{2}s - jvhsin(b) + \frac{1}{2}vh^{2}sin^{2}(d) - \frac{1}{2}vfh + jvf + \frac{1}{2}vf^{2} + \frac{1}{2}j^{2}v + \frac{1}{2}d^{2}tcos^{2}(k) + \frac{1}{2}th^{2}sin^{2}(k)cos^{2}(d) + ithsin(k)cos(k)cos(d)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}oa^{2} + \frac{1}{2}ob^{2} + \frac{1}{2}pa^{2} + \frac{1}{2}pb^{2} + \frac{1}{2}qa^{2} + \frac{1}{2}qb^{2} + \frac{1}{2}rh^{2} + \frac{1}{2}ri^{2} - rjhsin(d) + \frac{1}{2}rj^{2} - jshsin(b) + \frac{1}{2}sh^{2}sin^{2}(d) - \frac{1}{2}sfh + jsf + \frac{1}{2}sf^{2} + \frac{1}{2}j^{2}s - jvhsin(b) + \frac{1}{2}vh^{2}sin^{2}(d) - \frac{1}{2}vfh + jvf + \frac{1}{2}vf^{2} + \frac{1}{2}j^{2}v + \frac{1}{2}d^{2}tcos^{2}(k) + \frac{1}{2}th^{2}sin^{2}(k)cos^{2}(d) + ithsin(k)cos(k)cos(d)\right)}{dh}\\=&0 + 0 + 0 + 0 + 0 + 0 + \frac{1}{2}r*2h + 0 - rjsin(d) - rjhcos(d)*0 + 0 - jssin(b) - jshcos(b)*0 + \frac{1}{2}s*2hsin^{2}(d) + \frac{1}{2}sh^{2}*2sin(d)cos(d)*0 - \frac{1}{2}sf + 0 + 0 + 0 - jvsin(b) - jvhcos(b)*0 + \frac{1}{2}v*2hsin^{2}(d) + \frac{1}{2}vh^{2}*2sin(d)cos(d)*0 - \frac{1}{2}vf + 0 + 0 + 0 + \frac{1}{2}d^{2}t*-2cos(k)sin(k)*0 + \frac{1}{2}t*2hsin^{2}(k)cos^{2}(d) + \frac{1}{2}th^{2}*2sin(k)cos(k)*0cos^{2}(d) + \frac{1}{2}th^{2}sin^{2}(k)*-2cos(d)sin(d)*0 + itsin(k)cos(k)cos(d) + ithcos(k)*0cos(k)cos(d) + ithsin(k)*-sin(k)*0cos(d) + ithsin(k)cos(k)*-sin(d)*0\\=&rh - rjsin(d) - jssin(b) + shsin^{2}(d) - \frac{sf}{2} - jvsin(b) + vhsin^{2}(d) - \frac{vf}{2} + thsin^{2}(k)cos^{2}(d) + itsin(k)cos(k)cos(d)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!