There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 4{x}^{(\frac{(π - 1)(1 - sin(π)x)}{(π + 1)})} + 4{(1 - x)}^{(\frac{(π - 1)(1 - sin(π)x)}{(π + 1)})} + {9}^{x} + {9}^{(1 - x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 4{x}^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})} + 4(-x + 1)^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})} + {9}^{x} + {9}^{(-x + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4{x}^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})} + 4(-x + 1)^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})} + {9}^{x} + {9}^{(-x + 1)}\right)}{dx}\\=&4({x}^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})}((-(\frac{-(0 + 0)}{(π + 1)^{2}})πxsin(π) - \frac{πsin(π)}{(π + 1)} - \frac{πxcos(π)*0}{(π + 1)} + (\frac{-(0 + 0)}{(π + 1)^{2}})π + 0 + (\frac{-(0 + 0)}{(π + 1)^{2}})xsin(π) + \frac{sin(π)}{(π + 1)} + \frac{xcos(π)*0}{(π + 1)} - (\frac{-(0 + 0)}{(π + 1)^{2}}))ln(x) + \frac{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})(1)}{(x)})) + 4((-x + 1)^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})}((-(\frac{-(0 + 0)}{(π + 1)^{2}})πxsin(π) - \frac{πsin(π)}{(π + 1)} - \frac{πxcos(π)*0}{(π + 1)} + (\frac{-(0 + 0)}{(π + 1)^{2}})π + 0 + (\frac{-(0 + 0)}{(π + 1)^{2}})xsin(π) + \frac{sin(π)}{(π + 1)} + \frac{xcos(π)*0}{(π + 1)} - (\frac{-(0 + 0)}{(π + 1)^{2}}))ln(-x + 1) + \frac{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})(-1 + 0)}{(-x + 1)})) + ({9}^{x}((1)ln(9) + \frac{(x)(0)}{(9)})) + ({9}^{(-x + 1)}((-1 + 0)ln(9) + \frac{(-x + 1)(0)}{(9)}))\\=& - \frac{4π{x}^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})}ln(x)sin(π)}{(π + 1)} + \frac{4{x}^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})}ln(x)sin(π)}{(π + 1)} - \frac{4π{x}^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})}sin(π)}{(π + 1)} + \frac{4π{x}^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})}}{(π + 1)x} + \frac{4{x}^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})}sin(π)}{(π + 1)} - \frac{4π(-x + 1)^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})}ln(-x + 1)sin(π)}{(π + 1)} + \frac{4(-x + 1)^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})}ln(-x + 1)sin(π)}{(π + 1)} - \frac{4{x}^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})}}{(π + 1)x} + \frac{4πx(-x + 1)^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})}sin(π)}{(π + 1)(-x + 1)} - \frac{4π(-x + 1)^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})}}{(π + 1)(-x + 1)} - \frac{4x(-x + 1)^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})}sin(π)}{(π + 1)(-x + 1)} + \frac{4(-x + 1)^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})}}{(π + 1)(-x + 1)} + {9}^{x}ln(9) - {9}^{(-x + 1)}ln(9)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!